DOI QR코드

DOI QR Code

Effects of Surface Characteristics of TiO2 Nanotublar Composite on Photocatalytic Activity

TiO2 복합 광촉매의 표면 특성과 광촉매 효율

  • Lee, Jong-Ho (Department of Chemistry, Hanseo University) ;
  • Youn, Jeong-Il (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Kim, Young-Jig (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Oh, Han-Jun (Department of Materials Science, Hanseo University)
  • 이종호 (한서대학교 화학과) ;
  • 윤정일 (성균관대학교 신소재공학부) ;
  • 김영직 (성균관대학교 신소재공학부) ;
  • 오한준 (한서대학교 신소재공학과)
  • Received : 2014.09.03
  • Accepted : 2014.09.25
  • Published : 2014.10.27

Abstract

To synthesize a high-performance photocatalyst, N doped $TiO_2$ nanotubes deposited with Ag nanoparticles were synthesized, and surface characteristics, electrochemical behaviors, and photocatalytic activity were investigated. The $TiO_2$ nanotubular photocatalyst was fabricated by anodization; the Ag nanoparticles on the $TiO_2$ nanotubes were synthesized by a reduction reaction in $AgNO_3$ solution under UV irradiation. The XPS results of the N doped $TiO_2$ nanotubes showed that the incorporated nitrogen ions were located in interstitial sites of the $TiO_2$ crystal structure. The N doped titania nanotubes exhibited a high dye degradation rate, which is effectively attributable to the increase of visible light absorption due to interstitial nitrogen ions in the crystalline $TiO_2$ structure. Moreover, the precipitated Ag particles on the titania nanotubes led to a decrease in the rate of electron-hole recombination; the photocurrent of this electrode was higher than that of the pure titania electrode. From electrochemical and dye degradation results, the photocurrent and photocatalytic efficiency were found to have been significantly affected by N doping and the deposition of Ag particles.

Keywords

References

  1. N. K. Allam and C. A. Grimes, J. Phys. Chem. C Lett., 113(19), 7996 (2009). https://doi.org/10.1021/jp902140d
  2. X. Zeng, Y. X. Gan, E. Clark and L. Su, J. Alloys Comp., 509(24), L221 (2011). https://doi.org/10.1016/j.jallcom.2011.03.154
  3. D. Fang, K. L. Huang, S. Q. Liu and Z. J. Li, J. Alloys Comp., 464, L5 (2008). https://doi.org/10.1016/j.jallcom.2007.09.141
  4. L. Deng, S. Wang, D. Liu, B. Zhu, W. Huang, S. Wu and S. Zhang, Catal. Lett., 129, 513 (2009). https://doi.org/10.1007/s10562-008-9834-5
  5. W. Y. Choi, A. Termin and M. R. Hoffmann, J. Phys. Chem., 98(51), 13669 (1994). https://doi.org/10.1021/j100102a038
  6. L. X. Yang, D. M. He and Q. Y. Cai, J. Phys. Chem. C, 111, 8214 (2007). https://doi.org/10.1021/jp067207k
  7. C. Yang, H. Fan, Y. Xi, J. Chen and Z. Li, Appl. Surf. Sci., 254(9), 2685 (2008). https://doi.org/10.1016/j.apsusc.2007.10.006
  8. S. Banerjee, S. K. Mohapatra, P. P. Das and M. Misra, Chem. Mater., 20(21), 6784 (2008). https://doi.org/10.1021/cm802282t
  9. L. X. Yang, S. L. Luo, Y. Li, Y. Xiao, Q. Kang and Q. Y. Cai, Environ. Sci. Technol., 44(19), 7641 (2010). https://doi.org/10.1021/es101711k
  10. H. -J. Oh, J. -H. Lee, Y. -J. Kim, S. -J. Suh, J. -H. Lee and C. -S. Chi, Appl. Catal. B Environ., 84, 142 (2008). https://doi.org/10.1016/j.apcatb.2008.03.014
  11. H. -J. Oh, R. Hock, R. Schurr, A. Hoelzing and C. -S. Chi, J. Phys. Chem. Solid. 74, 708 (2013). https://doi.org/10.1016/j.jpcs.2013.01.008
  12. J. Yuan, E. Wang, Y. Chen, W. Yang, J. Yao and Y. Cao, Appl. Surf. Sci., 257(16), 7335 (2011). https://doi.org/10.1016/j.apsusc.2011.03.139
  13. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 293(5528), 269 (2001). https://doi.org/10.1126/science.1061051
  14. N. C. Saha and H. G. Tompkins, J. Appl. Phys., 72(7), 3072 (1992). https://doi.org/10.1063/1.351465
  15. X. Chen, Y. Lou, A. C. Samia, C. Burda and J. L. Gole, Adv. Funct. Mater., 15(1), 41 (2005). https://doi.org/10.1002/adfm.200400184
  16. A. Nambu, J. Graciani, J. A. Rodriguez, Q. Wu, E. Fujita and J. J. Fernandez-Sanz, Chem. Phys., 125, 094706 (2006).
  17. O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck and J. T. Yates, J. Phys. Chem. B, 108(19), 6004 (2004). https://doi.org/10.1021/jp031267y
  18. H. Sun, Y. Bai, Y. Cheng, W. Jin and N. Xu, Ind. Eng. Chem. Res., 45(14), 4971 (2006). https://doi.org/10.1021/ie060350f
  19. J. A. Rengifo-Herrera, K. Pierzchala, A. Sienkiewicz, L. Forro, J. Kiwi and C. Pulgarin, Appl. Catal. B Environ., 88, 398 (2009). https://doi.org/10.1016/j.apcatb.2008.10.025
  20. E. Sumesh, M. S. Bootharaju and A. T. Pradeep, J. Hazard. Materi., 189, 450 (2011). https://doi.org/10.1016/j.jhazmat.2011.02.061
  21. Y. Lai, H. Zhang, K. Xie, D. Gong, Y. Tang, L. Sun, C. Lin and Z. Chen, New J. Chem., 34, 1335 (2010). https://doi.org/10.1039/b9nj00780f
  22. I. Lopez-Salido, D. C. Lim and Y. D. Kim, Surf. Sci., 588, 6 (2005). https://doi.org/10.1016/j.susc.2005.05.021
  23. B. Tan and Y. Wu, J. Phys. Chem. B, 110(32), 15932 (2006). https://doi.org/10.1021/jp063972n
  24. J. -M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. Gonzalez-Elipe and A. Fernandez, Appl. Catal. B Environ., 13, 219 (1997). https://doi.org/10.1016/S0926-3373(96)00107-5
  25. K. -H. Wang, Y. -H. Hsieh, M. -Y. Chou and C. -Y. Chang, Appl. Catal. B Environ., 21, 1 (1999). https://doi.org/10.1016/S0926-3373(98)00116-7
  26. S. N. Hosseini, S. M. Borghei, M. Vossoughi and N. Taghavinia, Appl. Catal. B Environ., 74, 53 (2007). https://doi.org/10.1016/j.apcatb.2006.12.015
  27. B. Zielinska and A. W. Morawski, Appl. Catal. B Environ., 55, 221 (2005). https://doi.org/10.1016/j.apcatb.2004.08.015
  28. F. Peng, L. Cai, H. Yu, H. Wang and J. Yang, J. Solid State Chem., 181(1), 130 (2008). https://doi.org/10.1016/j.jssc.2007.11.012
  29. Z. Sheng, Z. Wu, Y. Liu and H. Wang, Catal. Commun., 9(9), 1941 (2008). https://doi.org/10.1016/j.catcom.2008.03.022
  30. A.V. Rupa, D. Manikandan, D. Divakar and T. Sivakumar, J Hazard. Mater., 147(3), 906 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.107