DOI QR코드

DOI QR Code

Distribution of Phytoavailable Heavy Metals in the Korean Agricultural Soils Affected by the Abandoned Mining Sites and Soil Properties Influencing on the Phytoavailable Metal Pools

  • Lim, Ga-Hee (Department of Environment Horticulture, University of Seoul) ;
  • Kim, Kye-Hoon (Department of Environment Horticulture, University of Seoul) ;
  • Seo, Byoung-Hwan (Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology) ;
  • Kim, Kwon-Rae (Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology)
  • 투고 : 2014.04.14
  • 심사 : 2014.06.02
  • 발행 : 2014.06.30

초록

Absorption and accumulation of heavy metals in plants were determined by phytoavailable contents rather than total contents of heavy metals. Therefore, phytoavailability-based management protocol should be prepared for safe food crop production in contaminated agricultural lands. This study was conducted to understand the distribution and phytoavailability of heavy metal in the Korean agricultural soils affected by abandoned mining sites along with investigation of soil properties (soil pH, OM, DOC, clay content, Al/Fe/Mn content) influencing on the metal phytoavailability. For this, 142 agricultural soils located nearby 39 abandoned mining sites distributed in five province in Korea, were analyzed. Among the four different heavy metals, cadmium (Cd) and zinc (Zn) appeared to exist in more phytoavailable form than cupper (Cu) and lead (Pb). Soil pH was the main factor governing phytoavailable Cd, Pb, and Zn showing positive relationship with partitioning coefficients of the corresponding metals; Cd (r = 0.66, P < 0.001), Pb (r = 0.70, P < 0.001), and Zn (r = 0.62, P < 0.001). This implied higher phytoavailability of the corresponding metals with higher soil pH. In contrast, phytoavailability of Cu (r = 0.41, p < 0.01) was only negatively related with soil DOC (dissolved organic carbon).

키워드

참고문헌

  1. Almas A.R., M.B. McBride. and B.R. Singh. 2000. Solubility and lability of cadmium and zinc in two soils treated with organic matter. Soil Science 165:250-259. https://doi.org/10.1097/00010694-200003000-00007
  2. Christensen J.B. and T.H. Christensen. 1999. Complexation of Cd, Ni, and Zn by DOC in polluted groundwater: a comparison of approaches using resin exchange, aquifer material sorption, and computer speciation models (WHAM and MINTEQA2). Environ. Sci. Tech. 33(21):3857-3863. https://doi.org/10.1021/es981105t
  3. Jung, M.C., M.Y. Jung. and Y.W. Choi. 2004. Environmental assessment of heavy metals around abandoned metalliferous mine in Korea. Econ. Environ. Geol. 37(1):21-33.
  4. Kang, S.S., A.S. Roh, S.C. Choi, Y.S. Kim, H.J. Kim, M.T. Choi, B.K. Ahn, H.W. Kim, H.K. Kim, J.H. Park, Y.H. Lee, S.H. Yang, J.S. Ryu, Y.S. Jang, M.S. Kim, Y.K. Son, C.H. Lee, S.G. Ha, D.B. Lee. and Y.H. Kim. 2012. Status and changes in chemical properties of paddy soil in Korea. Korean J. Soil Sci. Fert. 45(6):968-972. https://doi.org/10.7745/KJSSF.2012.45.6.968
  5. Kim, K.R., G. Owens, R. Naidu. and K.H. Kim. 2007. Assessment techniques of heavy metal bioavailability in soil - A critical review. Korean J. Soil Sci. Fert. 40(4):311-325.
  6. Kim, K. R., G. Owens. And R. Naidu. 2009. Heavy metal distribution, bioaccessibility, and phytoavailability in long-term contaminated soils from Lake Macquarie, Australia. Australian J. Soil Res. 47(2):166-176. https://doi.org/10.1071/SR08054
  7. Kim, K.R., J.S. Park, M.S. Kim, N.I. Koo, S.H. Lee, J.S. Lee, S.C. Kim, J.E. Yang. and J.G. Kim. 2010. Changes in heavy metal phytoavailability by application of immobilizing agents and soil cover in the upland soil nearby abandoned mining area and subsequent metal uptake by red pepper. Korean J. Soil Sci. Fert. 43(6):864-871.
  8. Kim, K.R., J.G. Kim, J.S. Park, M.S. Kim, G. Owens, G.H. Youn. And J.S. Lee. 2012. Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production. J. Environ. Manage. 102:88-95. https://doi.org/10.1016/j.jenvman.2012.02.001
  9. Krishnamurti, G.S.R. and R. Naidu. 2003. Solid-solution equilibria of cadmium in soils. Geoderma 113(1):17-30. https://doi.org/10.1016/S0016-7061(02)00313-0
  10. Lee, J.S., Y.N. Kim. and K.H. Kim. 2010. Suitability assessment for agriculture of soils adjacent to abandoned mining areas using different human risk assessment models. Korean J. Soil Sci. Fert. 43(5):674-683.
  11. Miller, W.P. and M. Miller. 1987. A micro pipette method for soil mechanical analysis, Commun. Soil Sci. Plant Anal. 18: 1-15. https://doi.org/10.1080/00103628709367799
  12. MIRECO. 2013. Yearbook of mireco statistics (2012). p.5. Mine Reclamation Corporation. Korea.
  13. NAAS, 2010. Analysis methods for soil chemical properties. NAAS. Suwon. Publication No. 11-1390802-000282-01.
  14. Naidu, R., N.S. Bolan, R.S. Kookana. and K.G. Tiller. 1994. Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils. European J. Soil Sci. 45(4): 419-429. https://doi.org/10.1111/j.1365-2389.1994.tb00527.x
  15. Naidu, R., R.S. Kookana, M.E. Sumner, R.D. Harter, and K.G. Tiller. 1997. Cadmium sorption and transport in variable charge soils: A Review. J. Environ. Qual. 26:602-617.
  16. Qin F., X-Q. Shan. and B. Wei. 2004. Effects of low-molecularweight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere 57(4):253-263. https://doi.org/10.1016/j.chemosphere.2004.06.010
  17. Ruby, M.V., A. Davis, T.E. Link, R. Schoof, R.L. Chaney, G.B. Freeman. and P. Bergstrom. 1993. Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead. Environ. Sci. Tech. 27(13):2870-2877. https://doi.org/10.1021/es00049a030
  18. Sauve, S., W. Hendershot. and H.E. Allen. 2000a. Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ. Sci. Tech. 34(7):1125-1131. https://doi.org/10.1021/es9907764
  19. Sauve, S., W.A. Norvell, M. McBride. and W. Hendershot. 2000b. Complexation and speciation of cadmium in extracted soil solutions. Environ. Sci. Tech. 34:291-296. https://doi.org/10.1021/es990202z
  20. Schwertmann, U. 1964. The differentiation of iron oxide in soils by a photochemical extraction with acid ammonium oxalate, Z. Pflanzenernahr Dung. Bodenkunde. 105:194-201. https://doi.org/10.1002/jpln.3591050303
  21. Schwertmann, U. 1973. Use of oxalate for Fe extraction from soils. Can. J. Soil Sci. 53:244-246. https://doi.org/10.4141/cjss73-037
  22. Seo, B.H., G.H. Lim, K.H. Kim, J.H. Kim, J.H. Hur, W.I. Kim. and K.R. Kim. 2013. Comparison of single extractions for evaluation of heavy metal phytoavailability in soil. Korean J. Environ. Agri. 32(3):171-178. https://doi.org/10.5338/KJEA.2013.32.3.171
  23. Tack, F.M.G., E. Van Ranst, C. Lievens. and R.E. Vandenberghe. 2006. Soil solution Cd, Cu and Zn concentrations as affected by short-time drying or wetting: The role of hydrous oxides of Fe and Mn. Geoderma 137(1):83-89. https://doi.org/10.1016/j.geoderma.2006.07.003
  24. Wang, X.P., X.Q. Shan, S.Z. Zhang. and B. Wen. 2004. A model for evaluation of the phytoavailability of trace elements to vegetables under the field conditions. Chemosphere 55:811-822. https://doi.org/10.1016/j.chemosphere.2003.12.003
  25. Yoon, J.K., D.H. Kim, T.S. Kim, J.G. Park, I.R. Chung, J.H. Kim. and H. Kim. 2009. Evaluation on natural background of the soil heavy metals in Korea, J. Soil Groundwater Env. 14(3):32-39.