DOI QR코드

DOI QR Code

Vitamin D and chronic kidney disease

  • Kim, Chang Seong (Department of Internal Medicine, Chonnam National University Medical School) ;
  • Kim, Soo Wan (Department of Internal Medicine, Chonnam National University Medical School)
  • Received : 2014.05.10
  • Accepted : 2014.05.23
  • Published : 2014.07.01

Abstract

Chronic kidney disease (CKD) has been recognized as a significant global health problem because of the increased risk of total and cardiovascular morbidity and mortality. Vitamin D deficiency or insufficiency is common in patients with CKD, and serum levels of vitamin D appear to have an inverse correlation with kidney function. Growing evidence has indicated that vitamin D deficiency may contribute to deteriorating renal function, as well as increased morbidity and mortality in patients with CKD. Recent studies have suggested that treatment with active vitamin D or its analogues can ameliorate renal injury by reducing fibrosis, apoptosis, and inflammation in animal models; this treatment also decreases proteinuria and mortality in patients with CKD. These renoprotective effects of vitamin D treatment are far beyond its classical role in the maintenance of bone and mineral metabolism, in addition to its pleiotropic effects on extramineral metabolism. In this review, we discuss the altered metabolism of vitamin D in kidney disease, and the potential renoprotective mechanisms of vitamin D in experimental and clinical studies. In addition, issues regarding the effects of vitamin D treatment on clinical outcomes are discussed.

Keywords

References

  1. Tonelli M, Wiebe N, Culleton B, et al. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol 2006;17:2034-2047. https://doi.org/10.1681/ASN.2005101085
  2. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002;39(2 Suppl 1):S1-S266.
  3. Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis 2003;41:1-12. https://doi.org/10.1016/S0272-6386(03)70048-1
  4. Shin SY, Kwon MJ, Park H, Woo HY. Comparison of chronic kidney disease prevalence examined by the chronic kidney disease epidemiology collaboration equation with that by the modification of diet in renal disease equation in Korean adult population. J Clin Lab Anal 2014 Feb 27 [Epub]. http://dx.doi.org/10.1002/ jcla.21688.
  5. Ruilope LM. Renal function and cardiovascular risk in hypertensive patients. J Hypertens 2005;23:1787-1788. https://doi.org/10.1097/01.hjh.0000183526.58499.65
  6. Holick MF. Vitamin D def iciency. N Engl J Med 2007;357:266-281. https://doi.org/10.1056/NEJMra070553
  7. LaClair RE, Hellman RN, Karp SL, et al. Prevalence of calcidiol deficiency in CKD: a cross-sectional study across latitudes in the United States. Am J Kidney Dis 2005;45:1026-1033. https://doi.org/10.1053/j.ajkd.2005.02.029
  8. Urena-Torres P, Metzger M, Haymann JP, et al. Association of kidney function, vitamin D deficiency, and circulating markers of mineral and bone disorders in CKD. Am J Kidney Dis 2011;58:544-553. https://doi.org/10.1053/j.ajkd.2011.04.029
  9. Mehrotra R, Kermah DA, Salusky IB, et al. Chronic kidney disease, hypovitaminosis D, and mortality in the United States. Kidney Int 2009;76:977-983. https://doi.org/10.1038/ki.2009.288
  10. Pilz S, Iodice S, Zittermann A, Grant WB, Gandini S. Vitamin D status and mortality risk in CKD: a meta- analysis of prospective studies. Am J Kidney Dis 2011;58:374-382. https://doi.org/10.1053/j.ajkd.2011.03.020
  11. Zheng Z, Shi H, Jia J, Li D, Lin S. Vitamin D supplementation and mortality risk in chronic kidney disease: a meta-analysis of 20 observational studies. BMC Nephrol 2013;14:199. https://doi.org/10.1186/1471-2369-14-199
  12. Teng M, Wolf M, Ofsthun MN, et al. Activated injectable vitamin D and hemodialysis survival: a historical cohort study. J Am Soc Nephrol 2005;16:1115-1125. https://doi.org/10.1681/ASN.2004070573
  13. Mirkovic K, van den Born J, Navis G, de Borst MH. Vitamin D in chronic kidney disease: new potential for intervention. Curr Drug Targets 2011;12:42-53. https://doi.org/10.2174/138945011793591572
  14. Holick MF. Resurrection of vitamin D deficiency and rickets. J Clin Invest 2006;116:2062-2072. https://doi.org/10.1172/JCI29449
  15. Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol 2005;289:F8-F28. https://doi.org/10.1152/ajprenal.00336.2004
  16. Hewison M, Zehnder D, Chakraverty R, Adams JS. Vitamin D and barrier function: a novel role for extra-renal 1 alpha-hydroxylase. Mol Cell Endocrinol 2004;215:31-38. https://doi.org/10.1016/j.mce.2003.11.017
  17. Adams JS, Hewison M. Update in vitamin D. J Clin Endocrinol Metab 2010;95:471-478. https://doi.org/10.1210/jc.2009-1773
  18. Ohyama Y, Ozono K, Uchida M, et al. Identification of a vitamin D-responsive element in the 5'-flanking region of the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J Biol Chem 1994;269:10545-10550.
  19. Andress DL. Vitamin D in chronic kidney disease: a systemic role for selective vitamin D receptor activation. Kidney Int 2006;69:33-43. https://doi.org/10.1038/sj.ki.5000045
  20. Dusso AS, Tokumoto M. Defective renal maintenance of the vitamin D endocrine system impairs vitamin D renoprotection: a downward spiral in kidney disease. Kidney Int 2011;79:715-729. https://doi.org/10.1038/ki.2010.543
  21. Hilpert J, Wogensen L, Thykjaer T, et al. Expression prof iling conf irms the role of endocytic receptor megalin in renal vitamin D3 metabolism. Kidney Int 2002;62:1672-1681. https://doi.org/10.1046/j.1523-1755.2002.00634.x
  22. Nykjaer A, Dragun D, Walther D, et al. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 1999;96:507-515. https://doi.org/10.1016/S0092-8674(00)80655-8
  23. Leheste JR, Rolinski B, Vorum H, et al. Megalin knockout mice as an animal model of low molecular weight proteinuria. Am J Pathol 1999;155:1361-1370. https://doi.org/10.1016/S0002-9440(10)65238-8
  24. Liu W, Yu WR, Carling T, et al. Regulation of gp330/ megalin expression by vitamins A and D. Eur J Clin Invest 1998;28:100-107. https://doi.org/10.1046/j.1365-2362.1998.00253.x
  25. Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 2004;19:429-435.
  26. Perwad F, Azam N, Zhang MY, Yamashita T, Tenenhouse HS, Portale AA. Dietary and serum phosphorus regulate f ibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology 2005;146:5358-5364. https://doi.org/10.1210/en.2005-0777
  27. Imanishi Y, Inaba M, Nakatsuka K, et al. FGF-23 in patients with end-stage renal disease on hemodialysis. Kidney Int 2004;65:1943-1946. https://doi.org/10.1111/j.1523-1755.2004.00604.x
  28. Larsson T, Nisbeth U, Ljunggren O, Juppner H, Jonsson KB. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int 2003;64:2272-2279. https://doi.org/10.1046/j.1523-1755.2003.00328.x
  29. Tanaka Y, Deluca HF. The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch Biochem Biophys 1973;154:566-574. https://doi.org/10.1016/0003-9861(73)90010-6
  30. Kuro-o M. Klotho and the aging process. Korean J Intern Med 2011;26:113-122. https://doi.org/10.3904/kjim.2011.26.2.113
  31. Usatii M, Rousseau L, Demers C, et al. Parathyroid hormone fragments inhibit active hormone and hypocalcemia- induced 1,25(OH)2D synthesis. Kidney Int 2007;72:1330-1335. https://doi.org/10.1038/sj.ki.5002532
  32. Hsu CH, Patel S. Uremic plasma contains factors inhibiting 1 alpha-hydroxylase activity. J Am Soc Nephrol 1992;3:947-952.
  33. Tan X, Li Y, Liu Y. Therapeutic role and potential mechanisms of active vitamin D in renal interstitial fibrosis. J Steroid Biochem Mol Biol 2007;103:491-496. https://doi.org/10.1016/j.jsbmb.2006.11.011
  34. Deb DK, Sun T, Wong KE, et al. Combined vitamin D analog and AT1 receptor antagonist synergistically block the development of kidney disease in a model of type 2 diabetes. Kidney Int 2010;77:1000-1009. https://doi.org/10.1038/ki.2010.22
  35. Sanchez-Nino MD, Bozic M, Cordoba-Lanus E, et al. Beyond proteinuria: VDR activation reduces renal inflammation in experimental diabetic nephropathy. Am J Physiol Renal Physiol 2012;302:F647-F657. https://doi.org/10.1152/ajprenal.00090.2011
  36. Tan X, Wen X, Liu Y. Paricalcitol inhibits renal inflammation by promoting vitamin D receptor-mediated sequestration of NF-kappaB signaling. J Am Soc Nephrol 2008;19:1741-1752. https://doi.org/10.1681/ASN.2007060666
  37. Park JW, Bae EH, Kim IJ, et al. Renoprotective effects of paricalcitol on gentamicin-induced kidney injury in rats. Am J Physiol Renal Physiol 2010;298:F301-F313. https://doi.org/10.1152/ajprenal.00471.2009
  38. Park JW, Bae EH, Kim IJ, et al. Paricalcitol attenuates cyclosporine-induced kidney injury in rats. Kidney Int 2010;77:1076-1085. https://doi.org/10.1038/ki.2010.69
  39. Schwarz U, Amann K, Orth SR, Simonaviciene A, Wessels S, Ritz E. Effect of 1,25 (OH)2 vitamin D3 on glomerulosclerosis in subtotally nephrectomized rats. Kidney Int 1998;53:1696-1705. https://doi.org/10.1046/j.1523-1755.1998.00951.x
  40. He W, Kang YS, Dai C, Liu Y. Blockade of Wnt/beta-catenin signaling by paricalcitol ameliorates proteinuria and kidney injury. J Am Soc Nephrol 2011;22:90-103. https://doi.org/10.1681/ASN.2009121236
  41. Garcia IM, Altamirano L, Mazzei L, et al. Role of mitochondria in paricalcitol-mediated cytoprotection during obstructive nephropathy. Am J Physiol Renal Physiol 2012;302:F1595-F1605. https://doi.org/10.1152/ajprenal.00617.2011
  42. Panichi V, Migliori M, Taccola D, et al. Effects of 1,25(OH)2D3 in experimental mesangial proliferative nephritis in rats. Kidney Int 2001;60:87-95. https://doi.org/10.1046/j.1523-1755.2001.00775.x
  43. Park JW, Cho JW, Joo SY, et al. Paricalcitol prevents cisplatin- induced renal injury by suppressing apoptosis and proliferation. Eur J Pharmacol 2012;683:301-309. https://doi.org/10.1016/j.ejphar.2012.03.019
  44. Suh SH, Lee KE, Park JW, et al. Antiapoptotic effect of paricalcitol in gentamicin-induced kidney injury. Korean J Physiol Pharmacol 2013;17:435-440. https://doi.org/10.4196/kjpp.2013.17.5.435
  45. Xiao H, Shi W, Liu S, et al. 1,25-Dihydroxyvitamin D(3) prevents puromycin aminonucleoside-induced apoptosis of glomerular podocytes by activating the phosphatidylinositol 3-kinase/Akt-signaling pathway. Am J Nephrol 2009;30:34-43. https://doi.org/10.1159/000200769
  46. Makibayashi K, Tatematsu M, Hirata M, et al. A vitamin D analog ameliorates glomerular injury on rat glomerulonephritis. Am J Pathol 2001;158:1733-1741. https://doi.org/10.1016/S0002-9440(10)64129-6
  47. Kuhlmann A, Haas CS, Gross ML, et al. 1,25-Dihydroxyvitamin D3 decreases podocyte loss and podocyte hypertrophy in the subtotally nephrectomized rat. Am J Physiol Renal Physiol 2004;286:F526-F533. https://doi.org/10.1152/ajprenal.00316.2003
  48. Freundlich M, Quiroz Y, Zhang Z, et al. Suppression of renin-angiotensin gene expression in the kidney by paricalcitol. Kidney Int 2008;74:1394-1402. https://doi.org/10.1038/ki.2008.408
  49. Zhang Y, Deb DK, Kong J, et al. Long-term therapeutic effect of vitamin D analog doxercalciferol on diabetic nephropathy: strong synergism with AT1 receptor antagonist. Am J Physiol Renal Physiol 2009;297:F791-F801. https://doi.org/10.1152/ajprenal.00247.2009
  50. Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest 2002;110:229-238. https://doi.org/10.1172/JCI0215219
  51. Kim CS, Joo SY, Lee KE, et al. Paricalcitol attenuates 4-hydroxy-2-hexenal-induced inf lammation and epithelial- mesenchymal transition in human renal proximal tubular epithelial cells. PLoS One 2013;8:e63186. https://doi.org/10.1371/journal.pone.0063186
  52. Tan X, Li Y, Liu Y. Paricalcitol attenuates renal interstitial fibrosis in obstructive nephropathy. J Am Soc Nephrol 2006;17:3382-3393. https://doi.org/10.1681/ASN.2006050520
  53. Drueke TB. Which vitamin D derivative to prescribe for renal patients. Curr Opin Nephrol Hypertens 2005;14:343-349. https://doi.org/10.1097/01.mnh.0000172720.34229.39
  54. Okada H, Kalluri R. Cellular and molecular pathways that lead to progression and regression of renal fibrogenesis. Curr Mol Med 2005;5:467-474. https://doi.org/10.2174/1566524054553478
  55. Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial f ibrosis induced by unilateral ureteral obstruction. J Clin Invest 2003;112:1486-1494. https://doi.org/10.1172/JCI200319270
  56. Rampanelli E, Rouschop K, Teske GJ, Claessen N, Leemans JC, Florquin S. CD44v3-v10 reduces the profibrotic effects of TGF-beta1 and attenuates tubular injury in the early stage of chronic obstructive nephropathy. Am J Physiol Renal Physiol 2013;305:F1445-F1454. https://doi.org/10.1152/ajprenal.00340.2013
  57. Zeisberg M, Duffield JS. Resolved: EMT produces fibroblasts in the kidney. J Am Soc Nephrol 2010;21:1247-1253. https://doi.org/10.1681/ASN.2010060616
  58. Yoon HE, Yang CW. Established and newly proposed mechanisms of chronic cyclosporine nephropathy. Korean J Intern Med 2009;24:81-92. https://doi.org/10.3904/kjim.2009.24.2.81
  59. Segerer S, Nelson PJ, Schlondorff D. Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies. J Am Soc Nephrol 2000;11:152-176.
  60. Guijarro C, Egido J. Transcription factor-kappa B (NF-kappa B) and renal disease. Kidney Int 2001;59:415-424. https://doi.org/10.1046/j.1523-1755.2001.059002415.x
  61. Havasi A, Borkan SC. Apoptosis and acute kidney injury. Kidney Int 2011;80:29-40. https://doi.org/10.1038/ki.2011.120
  62. Jiang M, Wei Q, Wang J, et al. Regulation of PUMA-alpha by p53 in cisplatin-induced renal cell apoptosis. Oncogene 2006;25:4056-4066. https://doi.org/10.1038/sj.onc.1209440
  63. Tourigny A, Charbonneau F, Xing P, et al. CYP24A1 exacerbated activity during diabetes contributes to kidney tubular apoptosis via caspase-3 increased expression and activation. PLoS One 2012;7:e48652. https://doi.org/10.1371/journal.pone.0048652
  64. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 2009;(113):S1-S130.
  65. Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr 2006;84:18-28. https://doi.org/10.1093/ajcn/84.1.18
  66. Nigwekar SU, Bhan I, Thadhani R. Ergocalciferol and cholecalciferol in CKD. Am J Kidney Dis 2012;60:139-156. https://doi.org/10.1053/j.ajkd.2011.12.035
  67. Levin A, Bakris GL, Molitch M, et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int 2007;71:31-38. https://doi.org/10.1038/sj.ki.5002009
  68. Agarwal R. Vitamin D, proteinuria, diabetic nephropathy, and progression of CKD. Clin J Am Soc Nephrol 2009;4:1523-1528. https://doi.org/10.2215/CJN.02010309
  69. Kalantar-Zadeh K, Kuwae N, Regidor DL, et al. Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int 2006;70:771-780. https://doi.org/10.1038/sj.ki.5001514
  70. Melamed ML, Eustace JA, Plantinga L, et al. Changes in serum calcium, phosphate, and PTH and the risk of death in incident dialysis patients: a longitudinal study. Kidney Int 2006;70:351-357. https://doi.org/10.1038/sj.ki.5001542
  71. Shoji T, Shinohara K, Kimoto E, et al. Lower risk for cardiovascular mortality in oral 1alpha-hydroxy vitamin D3 users in a haemodialysis population. Nephrol Dial Transplant 2004;19:179-184. https://doi.org/10.1093/ndt/gfg513
  72. Ravani P, Malberti F, Tripepi G, et al. Vitamin D levels and patient outcome in chronic kidney disease. Kidney Int 2009;75:88-95. https://doi.org/10.1038/ki.2008.501
  73. Holtkamp FA, de Zeeuw D, de Graeff PA, et al. Albuminuria and blood pressure, independent targets for cardioprotective therapy in patients with diabetes and nephropathy: a post hoc analysis of the combined RENAAL and IDNT trials. Eur Heart J 2011;32:1493-1499. https://doi.org/10.1093/eurheartj/ehr017
  74. Eijkelkamp WB, Zhang Z, Remuzzi G, et al. Albuminuria is a target for renoprotective therapy independent from blood pressure in patients with type 2 diabetic nephropathy: post hoc analysis from the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trial. J Am Soc Nephrol 2007;18:1540-1546. https://doi.org/10.1681/ASN.2006050445
  75. de Boer IH, Ioannou GN, Kestenbaum B, Brunzell JD, Weiss NS. 25-Hydroxyvitamin D levels and albuminuria in the Third National Health and Nutrition Examination Survey (NHANES III). Am J Kidney Dis 2007;50:69-77. https://doi.org/10.1053/j.ajkd.2007.04.015
  76. Isakova T, Gutierrez OM, Patel NM, Andress DL, Wolf M, Levin A. Vitamin D deficiency, inf lammation, and albuminuria in chronic kidney disease: complex interactions. J Ren Nutr 2011;21:295-302. https://doi.org/10.1053/j.jrn.2010.07.002
  77. de Zeeuw D, Agarwal R, Amdahl M, et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet 2010;376:1543-1551. https://doi.org/10.1016/S0140-6736(10)61032-X
  78. de Borst MH, Hajhosseiny R, Tamez H, Wenger J, Thadhani R, Goldsmith DJ. Active vitamin D treatment for reduction of residual proteinuria: a systematic review. J Am Soc Nephrol 2013;24:1863-1871. https://doi.org/10.1681/ASN.2013030203
  79. Wang TJ, Pencina MJ, Booth SL, et al. Vitamin D deficiency and risk of cardiovascular disease. Circulation 2008;117:503-511. https://doi.org/10.1161/CIRCULATIONAHA.107.706127
  80. Wu J, Garami M, Cheng T, Gardner DG. 1,25(OH)2 vitamin D3, and retinoic acid antagonize endothelin-stimulated hypertrophy of neonatal rat cardiac myocytes. J Clin Invest 1996;97:1577-1588. https://doi.org/10.1172/JCI118582
  81. Bae S, Yalamarti B, Ke Q, et al. Preventing progression of cardiac hypertrophy and development of heart failure by paricalcitol therapy in rats. Cardiovasc Res 2011;91:632-639. https://doi.org/10.1093/cvr/cvr133
  82. Thadhani R, Appelbaum E, Pritchett Y, et al. Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial. JAMA 2012;307:674-684. https://doi.org/10.1001/jama.2012.120
  83. Wang AY, Fang F, Chan J, et al. Effect of paricalcitol on left ventricular mass and function in CKD: the OPERA trial. J Am Soc Nephrol 2014;25:175-186. https://doi.org/10.1681/ASN.2013010103
  84. Faul C, Amaral AP, Oskouei B, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest 2011;121:4393- 4408. https://doi.org/10.1172/JCI46122
  85. Alvarez JA, Zughaier SM, Law J, et al. Effects of highdose cholecalciferol on serum markers of inflammation and immunity in patients with early chronic kidney disease. Eur J Clin Nutr 2013;67:264-269. https://doi.org/10.1038/ejcn.2012.217
  86. Liu LJ, Lv JC, Shi SF, Chen YQ, Zhang H, Wang HY. Oral calcitriol for reduction of proteinuria in patients with IgA nephropathy: a randomized controlled trial. Am J Kidney Dis 2012;59:67-74. https://doi.org/10.1053/j.ajkd.2011.09.014

Cited by

  1. Serum 25-Hydroxyvitamin D Level and Kidney Function Decline in a Swiss General Adult Population vol.10, pp.7, 2014, https://doi.org/10.2215/cjn.04960514
  2. Effects of sun exposure and dietary vitamin D intake on serum 25-hydroxyvitamin D status in hemodialysis patients vol.9, pp.2, 2014, https://doi.org/10.4162/nrp.2015.9.2.158
  3. Chronic Kidney Disease-Mineral Bone Disorder in Korean Patients: a Report from the KoreaN Cohort Study for Outcomes in Patients With Chronic Kidney Disease (KNOW-CKD) vol.32, pp.2, 2017, https://doi.org/10.3346/jkms.2017.32.2.240
  4. Vitamin D deficiency is associated with increased risk of bacterial infections after kidney transplantation vol.32, pp.3, 2014, https://doi.org/10.3904/kjim.2015.214
  5. Anti-inflammatory and anti-apoptotic effects of paricalcitol in lipopolysaccharide-induced renal proximal tubular cell injury vol.36, pp.2, 2014, https://doi.org/10.23876/j.krcp.2017.36.2.109
  6. High Dosage of Vitamin D Regulates the Energy Metabolism and Increases Insulin Sensitivity, but are Associated with High Levels of Kidney Damage vol.78, pp.5, 2014, https://doi.org/10.1002/ddr.21394
  7. A double-blind, randomized, placebo-controlled trial of combined calcitriol and ergocalciferol versus ergocalciferol alone in chronic kidney disease with proteinuria vol.18, pp.1, 2014, https://doi.org/10.1186/s12882-017-0436-6
  8. Knowledge towards Chronic Kidney Disease Manifestations in Saudi Arabia vol.8, pp.11, 2014, https://doi.org/10.4236/ojpm.2018.811027
  9. Differential Association of Vitamin D Deficiency With Albuminuria by Sex in the Korean General Population: A Cross-sectional Study of the Korea National Health and Nutrition Examination Survey 2011-20 vol.51, pp.2, 2018, https://doi.org/10.3961/jpmph.17.005
  10. FEATURES OF THE EFFECT OF VARIOUS FORMS OF VITAMIN D ON THE BONE AND JOINT SYSTEM vol.25, pp.2, 2014, https://doi.org/10.24884/1607-4181-2018-25-2-19-31
  11. Comparison of vitamin D metabolites in wild and captive baboons vol.80, pp.12, 2014, https://doi.org/10.1002/ajp.22935
  12. Paricalcitol attenuates indoxyl sulfate-induced apoptosis through the inhibition of MAPK, Akt, and NF-kB activation in HK-2 cells vol.34, pp.1, 2019, https://doi.org/10.3904/kjim.2016.298
  13. Inflammation and Oxidative Stress in Chronic Kidney Disease—Potential Therapeutic Role of Minerals, Vitamins and Plant-Derived Metabolites vol.21, pp.1, 2020, https://doi.org/10.3390/ijms21010263
  14. Vitamin D Metabolites and Binding Protein Predict Preeclampsia in Women with Type 1 Diabetes vol.12, pp.7, 2014, https://doi.org/10.3390/nu12072048
  15. Low vitamin D status is associated with anaemia in hospitalised cats vol.187, pp.1, 2014, https://doi.org/10.1136/vr.105626
  16. Effect of Treatment with Inactive Vitamin D on the Intracranial Blood Flow in Patients with Chronic Obstructive Pulmonary Disease vol.10, pp.4, 2020, https://doi.org/10.1134/s2079057020040049
  17. Relationship between selection of dosage forms of vitamin D receptor activators and short-term survival of patients on hemodialysis vol.43, pp.1, 2014, https://doi.org/10.1080/0886022x.2021.1995423
  18. DIETARY INTAKE AND SUN EXPOSURE RELATED TO VITAMIN D CONCENTRATION IN THALASSEMIA PATIENTS: A LITERATURE REVIEW vol.16, pp.3, 2021, https://doi.org/10.20473/mgi.v16i3.238-247