References
- Somorjai IM, Lohmann JU, Holstein TW, Zhao Z. Stem cells: a view from the roots. Biotechnol J 2012;7:704-722. https://doi.org/10.1002/biot.201100349
- Grskovic M, Javaherian A, Strulovici B, Daley GQ. Induced pluripotent stem cells: opportunities for disease modelling and drug discovery. Nat Rev Drug Discov 2011;10:915-929.
- Schugar RC, Robbins PD, Deasy BM. Small molecules in stem cell self-renewal and differentiation. Gene Ther 2008;15:126-135. https://doi.org/10.1038/sj.gt.3303062
- Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 2008;132:661-680. https://doi.org/10.1016/j.cell.2008.02.008
- Zaehres H, Scholer HR. Induction of pluripotency: from mouse to human. Cell 2007;131:834-835. https://doi.org/10.1016/j.cell.2007.11.020
- Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-676. https://doi.org/10.1016/j.cell.2006.07.024
- Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 2007;1:55-70. https://doi.org/10.1016/j.stem.2007.05.014
- Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008;132:567-582. https://doi.org/10.1016/j.cell.2008.01.015
- Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-872. https://doi.org/10.1016/j.cell.2007.11.019
- Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318:1917-1920. https://doi.org/10.1126/science.1151526
- Chang CW, Lai YS, Pawlik KM, et al. Polycistronic lentiviral vector for "hit and run" reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells 2009;27:1042-1049. https://doi.org/10.1002/stem.39
- Feng B, Ng JH, Heng JC, Ng HH. Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 2009;4:301-312. https://doi.org/10.1016/j.stem.2009.03.005
- Heinrich EM, Dimmeler S. MicroRNAs and stem cells: control of pluripotency, reprogramming, and lineage commitment. Circ Res 2012;110:1014-1022. https://doi.org/10.1161/CIRCRESAHA.111.243394
- Kretsovali A, Hadjimichael C, Charmpilas N. Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming. Stem Cells Int 2012;2012:184154.
- Bayart E, Cohen-Haguenauer O. Technological overview of iPS induction from human adult somatic cells. Curr Gene Ther 2013;13:73-92. https://doi.org/10.2174/1566523211313020002
- Gonzalez F, Boue S, Izpisua Belmonte JC. Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet 2011;12:231-242. https://doi.org/10.1038/nrg2937
- Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science 2008;322:945-949. https://doi.org/10.1126/science.1162494
- Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes Dev 2010;24:2239-2263. https://doi.org/10.1101/gad.1963910
- Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 2009;4:381-384. https://doi.org/10.1016/j.stem.2009.04.005
- Jia F, Wilson KD, Sun N, et al. A nonviral minicircle vector for deriving human iPS cells. Nat Methods 2010;7:197-199. https://doi.org/10.1038/nmeth.1426
- Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010;7:618-630. https://doi.org/10.1016/j.stem.2010.08.012
- Hayden EC. California ponders cell-banking venture. Nature 2011;472:403. https://doi.org/10.1038/472403a
- Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 2009;85:348-362. https://doi.org/10.2183/pjab.85.348
- Dowey SN, Huang X, Chou BK, Ye Z, Cheng L. Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nat Protoc 2012;7:2013-2021. https://doi.org/10.1038/nprot.2012.121
- Ban H, Nishishita N, Fusaki N, et al. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A 2011;108:14234-14239. https://doi.org/10.1073/pnas.1103509108
- Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008;322:949-953. https://doi.org/10.1126/science.1164270
- Gonzalez F, Barragan Monasterio M, Tiscornia G, et al. Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proc Natl Acad Sci U S A 2009;106:8918-8922. https://doi.org/10.1073/pnas.0901471106
- Diecke S, Lisowski L, Mordwinkin NM, Kooreman NG, Wu JC. Second generation codon optimized minicircle (Comic) for non-viral reprogramming of human adult fibroblasts. In: Radisic M, Black LD 3rd, eds. Cardiac Tissue Engineering: Methods and Protocols. Vol. 1181. New York: Humana Press, 2014.
- Yu J, Hu K, Smuga-Otto K, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009;324:797-801. https://doi.org/10.1126/science.1172482
- Lu J, Zhang F, Xu S, Fire AZ, Kay MA. The extragenic spacer length between the 5' and 3' ends of the transgene expression cassette affects transgene silencing from plasmid-based vectors. Mol Ther 2012;20:2111-2119. https://doi.org/10.1038/mt.2012.65
- Chen ZY, He CY, Ehrhardt A, Kay MA. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 2003;8:495-500. https://doi.org/10.1016/S1525-0016(03)00168-0
- Narsinh KH, Jia F, Robbins RC, Kay MA, Longaker MT, Wu JC. Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat Protoc 2011;6:78-88.
- Lu J, Zhang F, Kay MA. A mini-intronic plasmid (MIP): a novel robust transgene expression vector in vivo and in vitro. Mol Ther 2013;21:954-963. https://doi.org/10.1038/mt.2013.33
- Hung SC, Kang MS, Kieff E. Maintenance of Epstein- Barr virus (EBV) oriP-based episomes requires EBV-encoded nuclear antigen-1 chromosome-binding domains, which can be replaced by high-mobility group-I or histone H1. Proc Natl Acad Sci U S A 2001;98:1865-1870. https://doi.org/10.1073/pnas.98.4.1865
- Okita K, Yamakawa T, Matsumura Y, et al. An efficient nonviral method to generate integration-free human- induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 2013;31:458-466. https://doi.org/10.1002/stem.1293
- Mandal PK, Rossi DJ. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat Protoc 2013;8:568-582. https://doi.org/10.1038/nprot.2013.019
- Colamonici OR, Domanski P, Sweitzer SM, Larner A, Buller RM. Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon alpha transmembrane signaling. J Biol Chem 1995;270:15974-15978. https://doi.org/10.1074/jbc.270.27.15974
- Amit M, Winkler ME, Menke S, et al. No evidence for infection of human embryonic stem cells by feeder cell-derived murine leukemia viruses. Stem Cells 2005;23:761-771. https://doi.org/10.1634/stemcells.2004-0046
- Warren L, Ni Y, Wang J, Guo X. Feeder-free derivation of human induced pluripotent stem cells with messenger RNA. Sci Rep 2012;2:657. https://doi.org/10.1038/srep00657
- Yoshioka N, Gros E, Li HR, et al. Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell 2013;13:246-254. https://doi.org/10.1016/j.stem.2013.06.001
- Kim D, Kim CH, Moon JI, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 2009;4:472-476. https://doi.org/10.1016/j.stem.2009.05.005
- Lee J, Sayed N, Hunter A, et al. Activation of innate immunity is required for efficient nuclear reprogramming. Cell 2012;151:547-558. https://doi.org/10.1016/j.cell.2012.09.034
- Hou P, Li Y, Zhang X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 2013;341:651-654. https://doi.org/10.1126/science.1239278
- Zwaka TP, Thomson JA. Homologous recombination in human embryonic stem cells. Nat Biotechnol 2003;21:319-321. https://doi.org/10.1038/nbt788
- Hockemeyer D, Soldner F, Beard C, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 2009;27:851-857. https://doi.org/10.1038/nbt.1562
- Ding Q, Lee YK, Schaefer EA, et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 2013;12:238-251. https://doi.org/10.1016/j.stem.2012.11.011
- Horii T, Morita S, Kimura M, et al. Genome engineering of mammalian haploid embryonic stem cells using the Cas9/RNA system. PeerJ 2013;1:e230. https://doi.org/10.7717/peerj.230
- Cheng LT, Sun LT, Tada T. Genome editing in induced pluripotent stem cells. Genes Cells 2012;17:431-438. https://doi.org/10.1111/j.1365-2443.2012.01599.x
- Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet 2014;15:321-334. https://doi.org/10.1038/nrg3686
- Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature 2012;481:295-305. https://doi.org/10.1038/nature10761
- Tiscornia G, Vivas EL, Izpisua Belmonte JC. Diseases in a dish: modeling human genetic disorders using induced pluripotent cells. Nat Med 2011;17:1570-1576. https://doi.org/10.1038/nm.2504
- Urbach A, Schuldiner M, Benvenisty N. Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells 2004;22:635-641. https://doi.org/10.1634/stemcells.22-4-635
- Park IH, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells. Cell 2008;134:877-886. https://doi.org/10.1016/j.cell.2008.07.041
- Dimos JT, Rodolfa KT, Niakan KK, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008;321:1218-1221. https://doi.org/10.1126/science.1158799
- Urbach A, Bar-Nur O, Daley GQ, Benvenisty N. Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 2010;6:407-411. https://doi.org/10.1016/j.stem.2010.04.005
- Carvajal-Vergara X, Sevilla A, D'Souza SL, et al. Patient- specif ic induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 2010;465:808-812. https://doi.org/10.1038/nature09005
- Yazawa M, Hsueh B, Jia X, et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 2011;471:230-234. https://doi.org/10.1038/nature09855
- Itzhaki I, Maizels L, Huber I, et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature 2011;471:225-229. https://doi.org/10.1038/nature09747
- Brennand KJ, Simone A, Jou J, et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011;473:221-225. https://doi.org/10.1038/nature09915
- Jang J, Kang HC, Kim HS, et al. Induced pluripotent stem cell models from X-linked adrenoleukodystrophy patients. Ann Neurol 2011;70:402-409. https://doi.org/10.1002/ana.22486
- Perel P, Roberts I, Sena E, et al. Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ 2007;334:197. https://doi.org/10.1136/bmj.39048.407928.BE
- Frey-Vasconcells J, Whittlesey KJ, Baum E, Feigal EG. Translation of stem cell research: points to consider in designing preclinical animal studies. Stem Cells Transl Med 2012;1:353-358. https://doi.org/10.5966/sctm.2012-0018
- Kramer AS, Harvey AR, Plant GW, Hodgetts SI. Systematic review of induced pluripotent stem cell technology as a potential clinical therapy for spinal cord injury. Cell Transplant 2013;22:571-617. https://doi.org/10.3727/096368912X655208
- Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 2004;3:711-715. https://doi.org/10.1038/nrd1470
- Irion S, Nostro MC, Kattman SJ, Keller GM. Directed differentiation of pluripotent stem cells: from developmental biology to therapeutic applications. Cold Spring Harb Symp Quant Biol 2008;73:101-110. https://doi.org/10.1101/sqb.2008.73.065
- Zhu H, Lensch MW, Cahan P, Daley GQ. Investigating monogenic and complex diseases with pluripotent stem cells. Nat Rev Genet 2011;12:266-275. https://doi.org/10.1038/nrg2951
- Saha K, Jaenisch R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 2009;5:584-595. https://doi.org/10.1016/j.stem.2009.11.009
- Miller JD, Ganat YM, Kishinevsky S, et al. Human iPSC-based modeling of late-onset disease via progerin- induced aging. Cell Stem Cell 2013;13:691-705. https://doi.org/10.1016/j.stem.2013.11.006
- Wernig M, Zhao JP, Pruszak J, et al. Neurons derived from reprogrammed f ibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc Natl Acad Sci U S A 2008;105:5856-5861. https://doi.org/10.1073/pnas.0801677105
- Hanna J, Wernig M, Markoulaki S, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007;318:1920-1923. https://doi.org/10.1126/science.1152092
- Lui KO, Waldmann H, Fairchild PJ. Embryonic stem cells: overcoming the immunological barriers to cell replacement therapy. Curr Stem Cell Res Ther 2009;4:70-80. https://doi.org/10.2174/157488809787169093
- Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 2013;499:481-484. https://doi.org/10.1038/nature12271
- Kamao H, Mandai M, Okamoto S, et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports 2014;2:205-218. https://doi.org/10.1016/j.stemcr.2013.12.007
- Zimmermann A, Preynat-Seauve O, Tiercy JM, Krause KH, Villard J. Haplotype-based banking of human pluripotent stem cells for transplantation: potential and limitations. Stem Cells Dev 2012;21:2364-2373. https://doi.org/10.1089/scd.2012.0088
- Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 2012;11:147-152. https://doi.org/10.1016/j.stem.2012.07.014
- Lin G, Xie Y, Ouyang Q, et al. HLA-matching potential of an established human embryonic stem cell bank in China. Cell Stem Cell 2009;5:461-465. https://doi.org/10.1016/j.stem.2009.10.009
- Taylor CJ, Bolton EM, Bradley JA. Immunological considerations for embryonic and induced pluripotent stem cell banking. Philos Trans R Soc Lond B Biol Sci 2011;366:2312-2322. https://doi.org/10.1098/rstb.2011.0030
Cited by
- Applications of Induced Pluripotent Stem Cells in Studying the Neurodegenerative Diseases vol.2015, pp.None, 2014, https://doi.org/10.1155/2015/382530
- Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives vol.8, pp.None, 2014, https://doi.org/10.2147/sccaa.s88036
- Transient Tcf3 Gene Repression by TALE-Transcription Factor Targeting vol.180, pp.8, 2014, https://doi.org/10.1007/s12010-016-2187-4
- Repair of cartilage defects in osteoarthritis rats with induced pluripotent stem cell derived chondrocytes vol.16, pp.None, 2014, https://doi.org/10.1186/s12896-016-0306-5
- CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells vol.32, pp.1, 2017, https://doi.org/10.3904/kjim.2016.198
- The role of hypoxia on the acquisition of epithelial-mesenchymal transition and cancer stemness: a possible link to epigenetic regulation vol.32, pp.4, 2017, https://doi.org/10.3904/kjim.2016.302
- Expression of markers for germ cells and oocytes in cow dermal fibroblast treated with 5-azacytidine and cultured in differentiation medium containing BMP2, BMP4 or follicular fluid vol.25, pp.3, 2017, https://doi.org/10.1017/s0967199417000211
- Generation of Induced Pluripotent Stem Cells from Human Epidermal Keratinocytes vol.20, pp.6, 2018, https://doi.org/10.1089/cell.2018.0035
- Different Chondrogenic Potential among Human Induced Pluripotent Stem Cells from Diverse Origin Primary Cells vol.2018, pp.None, 2014, https://doi.org/10.1155/2018/9432616
- Potential for Isolation of Immortalized Hepatocyte Cell Lines by Liver-DirectedIn VivoGene Delivery of Transposons in Mice vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/5129526
- Induced pluripotent stem cell‐derived extracellular vesicles: A novel approach for cell‐free regenerative medicine vol.234, pp.6, 2014, https://doi.org/10.1002/jcp.27775
- Metabolomic profiles of induced pluripotent stem cells derived from patients with rheumatoid arthritis and osteoarthritis vol.10, pp.1, 2014, https://doi.org/10.1186/s13287-019-1408-5
- Umbilical Cord-Mesenchymal Stem Cell-Conditioned Medium Improves Insulin Resistance in C2C12 Cell vol.44, pp.None, 2014, https://doi.org/10.4093/dmj.2019.0191