참고문헌
- Ameduri, S., Brindisi, A., Tiseo, B., Concilio, A. and Pecora, R. (2012), "Optimization and integration of shape memory alloy (SMA)-based elastic actuators within a morphing flap architecture", J. Intel. Mat. Syst. Str., 23(4), 381-396. https://doi.org/10.1177/1045389X11428672
- Baker, D. and Friswell, M.I. (2008), "The design of morphing aerofoils using compliant mechanisms", Proceedings of the 19th International Conference on Adaptive Structures and Technologies, Ascona (Switzerland), October.
- Barbarino, S., Ameduri, S. and Pecora, R. (2007), "Wing camber control architectures based on SMA: numerical investigation", Proceedings of SPIE, 6423, 64231E-1-64231E-8.
- Barbarino, S., Bilgen, O., Ajaj, R.M., Friswell, M.I. and Inman D.J. (2011a), "A review of morphing aircraft", J. Intel. Mat. Syst. Str., 22, 823-877. https://doi.org/10.1177/1045389X11414084
- Barbarino, S., Pecora, R., Lecce, L., Concilio, A., Ameduri, S. and Calvi, E.(2009), "A novel SMA-based concept for airfoil structural morphing", J. Mater. Eng. Perform., 18(5), 696-705. https://doi.org/10.1007/s11665-009-9356-3
- Barbarino, S., Pecora, R., Lecce, L., Concilio, A., Ameduri, S. and De Rosa, L. (2011b), "Airfoil structural morphing based on S.M.A. actuator series: numerical and experimental studies", J. Intel. Mat. Syst. Str., 22, 987-1003. https://doi.org/10.1177/1045389X11416032
- Bilgen, O., Kochersberger, K.B., Inman, D.J. and Ohanian III, O.J. (2009), "Novel, bi-directional, variable camber airfoil via macro-fiber composite actuators", Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs (California, US), May.
- Botez, R.,M., Molaret, P. and Laurendeau, E. (2007), "Laminar flow control on a research wing project presentation covering three year period", Canadian Aeronautics and Space Institute Annual General Meeting, Montreal (Canada), January.
- Blondeau, J. and Pines, D. (2004), "Pneumatic morphing aspect ratio wing", Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs (California, US), April.
- Bye, D.R. and McClure, P.D. (2007), "Design of a morphing vehicle", Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu (Hawaii, US), April.
- Chopra, I. (2002), "Review of state of art of smart structures and integrated systems", AIAA J., 40(11), 2145-2187. https://doi.org/10.2514/2.1561
- Grigorie, L.T., Botez, R.,M., Popov, A.V., Mamou, M. and Mebarki, Y. (2012a), "A hybrid fuzzy logic proportional-integral-derivative and conventional on-off controller for morphing wing actuation using shape memory alloy, Part 1: Morphing system mechanisms and controller architecture design", Aeronaut. J., 40 (1179), 433-449.
- Grigorie, L.T., Botez, R.M., Popov, A.V., Mamou, M. and Mebarki, Y. (2012b), "A hybrid fuzzy logic proportional-integral-derivative and conventional on-off controller for morphing wing actuation using shape memory alloy, Part 2: Controller implementation and validation", Aeronaut. J., 116(1179), 451-465. https://doi.org/10.1017/S0001924000006989
- Hasse, A. and Campanile, L.F. (2009), "Design of compliant mechanisms with selective compliance", Smart Mater. Struct., 18, 1-10.
- Ivanco, T.G., Scott, R.C., Love, M.H., Zink, S. and Weisshaar, T.A. (2007), "Validation of the Lockheed Martin morphing concept with wind tunnel testing", Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu (Hawaii, US), April.
- McGowan, A.R., Horta, L.G., Harrison, J.S. and Raney, D.L. (1999), "Research activities within NASA's morphing program", Proceedings of the RTO AVT Specialists' Meeting on Structural Aspects of Flexible Aircraft Control, Ottawa (Canada), October.
- Mingione, G. (2010), Preliminary design of wing trailing edge morphing architectures, JTI-GRA deliverable no. GRA2.2.1-TN-CIRAPlus-TECH-210105A, (research report).
- Monner, H.P., Sachau, D. and Brietbach, E. (1999), "Design aspects of the elastic trailing edge for an adaptive wing", Proceedings of the RTO AVT Specialists' Meeting on Structural Aspects of Flexible Aircraft Control, Ottawa (Canada), October.
- MSC-MD/NASTRAN (R), Software Package, Ver. R3-2006, "Reference Manual".
- Pecora, R., Amoroso, F. and Lecce, L. (2012), "Effectiveness of wing twist morphing in roll control", J. Aircraft, 49(6), 1666-1674. https://doi.org/10.2514/1.C000328
- Pecora, R., Barbarino, S., Concilio, A., Lecce, L. and Russo, S. (2011), "Design and functional test of a morphing high-lift device for a regional aircraft", J. Intel. Mat. Syst. Str., 22, 1005-1023. https://doi.org/10.1177/1045389X11414083
- Popov, A.V., Grigorie, T.L., Botez, R.M., Mebarki, Y. and Mamou, M. (2010), "Modelling and testing of a morphing wing in open-loop architecture", J. Aircraft, 47(3), 917-923. https://doi.org/10.2514/1.46480
- Song, G., Ma, N., Li, L., Penney, N., Barr, T., Lee, H.J. and Arnold, S. (2011), "Design and control of a proof-of-concept active jet intake using shape memory alloy actuators", Smart Struct. Syst., 7(1), 1-13. https://doi.org/10.12989/sss.2011.7.1.001
- Scarselli, G., Marulo, F. and Paonessa, A. (2010), "Sensitivity investigation of aircraft engine noise to operational parameters", Proceedings of the 16th AIAA/CEAS Aeroacoustics Conference (31st AIAA Aeroacoustics Conference), Stockholm (Sweden), June.
- Spillman, J. (1992), "The use of variable camber to reduce drag, weight and costs of transport aircraft", Aeronaut. J., 96, 1-8.
- Stanewsky, E. (2001), "Adaptive wing and flow control technology", Prog. Aerosp. Sci., 37, 583-667. https://doi.org/10.1016/S0376-0421(01)00017-3
- Vasista, S., Tong, L. and Wong, K.C. (2012), "Realization of morphing wings: a multidisciplinary challenge", J. Aircraft, 49, 11-28. https://doi.org/10.2514/1.C031060
- Web site link: www.cleansky.eu (Web site of the European Community project funding the researches described in this paper).
- Wildschek, A., Grunewald, M., Maier, R., Steigenberger, J., Judas, M., Deligiannidis N. and Aversa, N. (2008), "Multi-functional morphing trailing edge device for control of all-composite, all-electric flying wing aircraft", Proceedings of the 26th Congress of International Council of the Aeronautical Sciences (ICAS), Anchorage (Alaska, US), September.
피인용 문헌
- Aerodynamic/mechanism optimization of a variable camber Fowler flap for general aviation aircraft vol.60, pp.8, 2017, https://doi.org/10.1007/s11431-016-0218-5
- Design, numerical simulation and experimental testing of a controlled electrical actuation system in a real aircraft morphing wing model vol.119, pp.1219, 2015, https://doi.org/10.1017/S0001924000011131
- Design and integration sensitivity of a morphing trailing edge on a reference airfoil: The effect on high-altitude long-endurance aircraft performance vol.28, pp.20, 2017, https://doi.org/10.1177/1045389X17704521
- Real-time monitoring of a variable-camber aileron rib by original strain-angle transducer vol.28, pp.8, 2017, https://doi.org/10.1177/1045389X15620036
- Drag optimisation of a wing equipped with a morphing upper surface vol.120, pp.1225, 2016, https://doi.org/10.1017/aer.2016.6
- Numerical simulation and wind tunnel tests investigation and validation of a morphing wing-tip demonstrator aerodynamic performance vol.53, 2016, https://doi.org/10.1016/j.ast.2016.03.014
- A new non-linear vortex lattice method: Applications to wing aerodynamic optimizations vol.29, pp.5, 2016, https://doi.org/10.1016/j.cja.2016.08.001
- Improving the UAS-S4 Éhecal airfoil high angles-of-attack performance characteristics using a morphing wing approach vol.230, pp.1, 2016, https://doi.org/10.1177/0954410015587725
- Distributed actuation concepts for a morphing aileron device vol.120, pp.1231, 2016, https://doi.org/10.1017/aer.2016.64
- Numerical and experimental validation of a full scale servo-actuated morphing aileron model vol.27, pp.10, 2018, https://doi.org/10.1088/1361-665X/aad7d9
- Fiber optic shape sensor system for a morphing wing trailing edge vol.20, pp.4, 2017, https://doi.org/10.12989/sss.2017.20.4.441
- Electro-Actuation System Strategy for a Morphing Flap vol.6, pp.1, 2014, https://doi.org/10.3390/aerospace6010001
- Morphing wing flaps for large civil aircraft: Evolution of a smart technology across the Clean Sky program vol.34, pp.7, 2021, https://doi.org/10.1016/j.cja.2020.08.004