DOI QR코드

DOI QR Code

Design and investigation of a shape memory alloy actuated gripper

  • Krishna Chaitanya, S. (Vignan's University) ;
  • Dhanalakshmi, K. (National lnstitute of Technology)
  • 투고 : 2012.09.24
  • 심사 : 2013.10.03
  • 발행 : 2014.10.25

초록

This paper proposes a new design of shape memory alloy (SMA) wire actuated gripper for open mode operation. SMA can generate smooth muscle movements during actuation which make them potentially good contenders in designing grippers. The principle of the shape memory alloy gripper is to convert the linear displacement of the SMA wire actuator into the angular displacement of the gripping jaw. Steady state analysis is performed to design the wire diameter of the bias spring for a known SMA wire. The gripper is designed to open about an angle of $22.5^{\circ}$ when actuated using pulsating electric current from a constant current source. The safe operating power range of the gripper is determined and verified theoretically. Experimental evaluation for the uncontrolled gripper showed a rotation of $19.97^{\circ}$. Forced cooling techniques were employed to speed up the cooling process. The gripper is simple and robust in design (single movable jaw), easy to fabricate, low cost, and exhibits wide handling capabilities like longer object handling time and handling wide sizes of objects with minimum utilization of power since power is required only to grasp and release operations.

키워드

참고문헌

  1. Adelaide, N., Stefano, B., Simone, P., Elena, V. and Stefano, V. (2010), "The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators", Sensor. Actuat. - A: Phys., 158(1), 149-160. https://doi.org/10.1016/j.sna.2009.12.020
  2. Anupam, P., Diann, B. and Jonathan, L. (2010), "Transformation strain based method for characterization of convective heat transfer from shape memory alloy wires", Smart Mater. Struct., 19(3), doi:10.1088/0964-1726/19/3/035005.
  3. Asua, E.,Etxebarria, V.,Garcia, A. and Feuchtwange, J. (2009), "Micropositioning control of smart shape-memory alloy-based actuators", Assembly Autom., 29(3),272 - 278. https://doi.org/10.1108/01445150910972958
  4. Filippo, M., Rezia, M. and Cepolina, F. (2004), "Miniature gripping device", Proceedings of the IEEE International Conference on Intelligent Manipulation and Grasping IMG, Genova, Italy, 1-2 July.
  5. Gorbet, R.B., Morris, K.A., and Chau, R.C.C. (2009), "Mechanism of bandwidth improvement in passively cooled SMA position actuators", Smart Mater.Struct., 18(9), doi:10.1088/0964-1726/18/9/095013.
  6. http://www.dynalloy.com/TechData_Metric.html.
  7. Huang, W. (2002), "On the selection of shape memory alloys for actuators", Mater. Design., 23, 11-19. https://doi.org/10.1016/S0261-3069(01)00039-5
  8. Inderjit, C. (2002), "Reviewof state of art of smart structures and integrated systems", AIAA J., 40(11), 2145-2187. https://doi.org/10.2514/2.1561
  9. Kianzad, S., Karkouti, S.O. and Taghirad, H.D. (2011a), "Force control of intelligent laparoscopic grasper," J. Medical Imaging Health Inform., 1, 284-289. https://doi.org/10.1166/jmihi.2011.1042
  10. Kianzad, S., Amini, A. and Karkouti, S.O. (2011b) "Force control of laparoscopy grasper using antagonistic shape memory alloy", Proceedings of the IEEE Int. Conf. on Biomedical Engineering, Sharjah, 21-24 Feb.
  11. Kode, V.R.C. and Cavusoglu, M.C. (2007), "Design and characterization of a novel hybrid actuator using shape memory alloy and DC micromotor for minimally invasive surgery applications", Mechatronics IEEE/ASME Trans.,12(4),455-64. https://doi.org/10.1109/TMECH.2007.901940
  12. Koji, I. (1990), "Micro/miniature shape memory alloy actuator", Proceedings of the IEEE Int. Conf. on Robotics and Automation (ICRA), Cincinnati, OH, USA, 13-18 May.
  13. Kornbluh, R., Perline, R., Eckerle, J. and Joseph, J. (1998), "Electrostrictive polymer artificial muscle actuator", Proceedings of the IEEE Int. Conf. Robotics and Automation (ICRA), Leuven, Belgium, 3, 16-20 May.
  14. Kyung, J.H., Ko, B.G., Ha, Y.H. and Chung, G.J. (2008), "Design of a microgripper for micromanipulation of microcomponents using SMA wires and flexible hinges", Sens. Actuat. - A Phys., 141, 144-150. https://doi.org/10.1016/j.sna.2007.07.013
  15. Madden, P.G.A., John, D.W. M., Nathan, A.V., Patrick, A.A., Arash, T., Rachel, Z.P., Serge, R.L., Paul, A.W. and Ian, W.H.M. (2004), "Artificial muscle technology: physical principles and naval prospects", Ocean. Eng., 29, 706-28. https://doi.org/10.1109/JOE.2004.833135
  16. Mertmann, M. and Hornbogen, E. (1997), "Grippers for the micro assembly containing shape memory actuators and sensors", J.Phys. IV., 7(5), 621-626.
  17. Price, A.D., Jnifene, A. and Naguib, H.E. (2007), "Design and control of a shape memory alloy based dexterous robot hand", Smart Mater. Struct., 16, 1401-1414. https://doi.org/10.1088/0964-1726/16/4/055
  18. Shaoze, Y., Xiajie, L., Feng, X. and Jinhui, W. (2007), "A gripper actuated by a pair of differential SMA springs", J. Intel. Mater. Syst. Str., 18(5), 459-466. https://doi.org/10.1177/1045389X06067110
  19. Sofla, A.Y.N., Elzey, D.M. and Wadley, H.N.G. (2008), "Cyclic degradation of antagonistic shape memory actuated structures", Smart Mater. Struct., 17(2), 1-6.
  20. Sreekumar, M., Nagarajan, T., Singaperumal, M., Zoppi, M. and Molfino, R. (2007), "Critical review of current trends in shape memory alloy actuators for intelligent robots", Ind. Robot., 34(4), 285-294. https://doi.org/10.1108/01439910710749609
  21. Sun, L., Huang, W.L., Ding, Z., Zhao, Y., Wang, C.C., Purnawali, H. and Tang, C. (2012), "Stimulus-responsive shape memory materials: A review", Mater. Design., 33, 577-640. https://doi.org/10.1016/j.matdes.2011.04.065
  22. Zhong, Z.W. and Chan, S.Y. (2007), "Investigation of a gripping device actuated by SMA Wire", Sensor. Actuat. - APhys.,136(1), 335-340. https://doi.org/10.1016/j.sna.2006.11.007
  23. Zhong, Z.W. and Yeong, C.K. (2006), "Development of a gripper using SMA wire", Sensor. Actuat. - APhys.,126(2), 375-381. https://doi.org/10.1016/j.sna.2005.10.017

피인용 문헌

  1. A survey on actuators-driven surgical robots vol.247, 2016, https://doi.org/10.1016/j.sna.2016.06.010