DOI QR코드

DOI QR Code

Torsional analysis of heterogeneous magnetic circular cylinder

  • Zenkour, Ashraf M. (Department of Mathematics, Faculty of Science, King Abdulaziz University)
  • Received : 2013.12.26
  • Accepted : 2014.03.28
  • Published : 2014.10.25

Abstract

In this paper, the exact closed-form solutions for torsional analysis of heterogeneous magnetostrictive circular cylinder are derived. The cylinder is subjected to the action of a magnetic field produced by a constant longitudinal current density. It is also acted upon by a particular kind of shearing stress at its upper base. The rigidity of the cylinder is graded through its axial direction from one material at the lower base to another material at the upper base. The distributions of circumferential displacement and shear stresses are presented through the radial and axial directions of the cylinder. The influence of the magnetostrictive parameter is discussed. The effects of additional parameters are investigated.

Keywords

References

  1. Arain, S. and Ahiri, L. (1981), "Magneto-elastic torsional waves in a composite non homogeneous cylindrical shell under initial stress", Def. Sci. J., 31(2), 125-132. https://doi.org/10.14429/dsj.31.6349
  2. Hong, C.C. (2007), "Thermal vibration of magnetostrictive material in laminated plates by the GDQ method", Open Mech. J., 1(1), 29-37. https://doi.org/10.2174/1874158400701010029
  3. Hong, C.C. (2009), "Transient responses of magnetostrictive plates without shear effects", Int. J. Eng. Sci., 47(3), 355-362. https://doi.org/10.1016/j.ijengsci.2008.11.004
  4. Hong, C.C. (2010), "Transient responses of magnetostrictive plates by using the GDQ method", Eur. J. Mech. A/Solids, 29(6), 1015-1021. https://doi.org/10.1016/j.euromechsol.2010.07.007
  5. Kakar, R. (2014) "Magneto-electro-viscoelastic torsional waves in aeolotropic tube under initial compression stress", Lat. Am. J. Solids Struct., 11(4), 580-597. https://doi.org/10.1590/S1679-78252014000400002
  6. Mukhopadhyay, J. (1980), "A note on torsional deformation of a non-homogeneous magnetostrictive cylinder", Rev. Roum. Sci. Techn.-Mec. Appl., Tome, 25(1), 39-44.
  7. Pradhan, S.C. (2005) "Vibration suppression of FGM shells using embedded magnetostrictive layers", Int. J. Solid. Struct., 42(9-10), 2465-2488. https://doi.org/10.1016/j.ijsolstr.2004.09.049
  8. Ryu, J., Priya, S., Uchino, K. and Kim, H. (2002), "Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials", J. Electroceramics, 8(2), 107-119. https://doi.org/10.1023/A:1020599728432
  9. Singh, P.N. and Yadava, B. (1971), "Torsional oscillation of a viscoelastic cylinder in a magnetic field", Pure Appl. Geophys., 91(1), 51-55. https://doi.org/10.1007/BF00879556
  10. Taliercio, A. (2010), "Torsion of micropolar hollow circular cylinders", Mech. Res. Commun., 37(4), 406-411. https://doi.org/10.1016/j.mechrescom.2010.05.003
  11. Tarn, J.-Q. and Chang, H.-H. (2005), "Extension, torsion, bending, pressuring, and shearing of piezoelectric circular cylinders with radial inhomogeneity", J. Intel. Mater. Sys. Struct., 16(7-8), 631-641. https://doi.org/10.1177/1045389X05048144
  12. Wang, H.M. and Ding, H.J. (2007), "Radial vibration of piezoelectric/magnetostrictive composite hollow sphere", J. Sound Vib., 307(1-2), 330-348. https://doi.org/10.1016/j.jsv.2007.07.006
  13. Wang, H.M., Liu, C.B. and Ding, H.J. (2009), "Dynamic behavior of piezoelectric/ magnetostrictive composite hollow cylinder", Arch. Appl. Mech., 79(8), 753-771. https://doi.org/10.1007/s00419-008-0249-y
  14. Wan, J.G., Liu, J.M., Chand, H.L.W., Choy, C.L., Wang, G.H. and Nan, C.W. (2003), "Giant magnetoelectric effect of a hybrid of magnetostrictive and piezoelectric composites", J. Appl. Phys., 93, 9916-9919. https://doi.org/10.1063/1.1577404
  15. Wojciechowski, S. (2000), "New trends in the development of mechanical engineering materials", J. Mater. Proc. Tech., 106(1-3), 230-235. https://doi.org/10.1016/S0924-0136(00)00619-1
  16. Wu, B., Yu, J. and He, C. (2008), "Wave propagation in non-homogeneous magneto-electro-elastic plates", J. Sound Vib., 317(1-2), 250-264. https://doi.org/10.1016/j.jsv.2008.03.008
  17. Zenkour, A.M. (2006a), "Rotating variable-thickness orthotropic cylinder containing a solid core of uniform-thickness", Arch. Appl. Mech., 76(1-2), 89-102. https://doi.org/10.1007/s00419-006-0007-y
  18. Zenkour, A.M. (2006b), "Stresses in cross-ply laminated circular cylinders of axially variable thickness", Acta Mech., 187(1-4) 85-102. https://doi.org/10.1007/s00707-006-0356-1
  19. Zenkour, A.M. (2011), "Stresses in a rotating variable-thickness heterogeneous viscoelastic composite cylinder", Appl. Math. Mech.-Engl. Ed., 32(4) 1-14. https://doi.org/10.1007/s10483-011-1388-x
  20. Zenkour, A.M. (2012), "Dynamical bending analysis of functionally graded infinite cylinder with rigid core", Appl. Math. Comput., 218(17), 8997-9006. https://doi.org/10.1016/j.amc.2012.02.062

Cited by

  1. Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories vol.24, pp.3, 2017, https://doi.org/10.12989/scs.2017.24.3.297