참고문헌
- Adany, S. (2014), "Flexural buckling of simply-supported thin-walled columns with consideration of membrane shear deformations: Analytical solutions based on shell model", Thin-Wall. Struct., 74, 36-48. https://doi.org/10.1016/j.tws.2013.09.014
- Akoz, A.Y. and Ergun, H. (2012), "Analysis of partially embedded beams in two-parameter foundation", Struct. Eng. Mech., Int. J., 42(1), 1-12. https://doi.org/10.12989/sem.2012.42.1.001
- Alipour, M.M., Shariyat, M. and Shaban, M. (2010), "A semi-analytical solution for free vibration of variable thickness two-directional-functionally graded plates on elastic foundations", Int. J. Mech. Mater. Des., 6(4), 293-304. https://doi.org/10.1007/s10999-010-9134-2
- Ambartsumian, S.A. (1964), Theory of Anisotropic Plates; Strength, Stability, Vibration, Technomic, Stamford, USA.
- Asadi, E. and Qatu, M.S. (2012), "Static analysis of thick laminated shells with different boundary conditions using GDQ", Thin-Wall. Struct., 51, 76-81. https://doi.org/10.1016/j.tws.2011.11.004
- Atmane, H.A., Tounsi, A., Mechab, I. and Bedia, E.A.A. (2010), "Free vibration analysis of functionally graded plates resting on Winkler-Pasternak elastic foundations using a new shear deformation theory", Int. J. Mech. Mater. Des., 6(2), 113-121. https://doi.org/10.1007/s10999-010-9110-x
- Bagherizadeh, E., Kiani, Y. and Eslami, M.R. (2011), "Mechanical buckling of functionally graded material cylindrical shells surrounded by Pasternak elastic foundation", Compos. Struct., 93(11), 3063-3071. https://doi.org/10.1016/j.compstruct.2011.04.022
- Baron, C. (2011), "Propagation of elastic waves in an anisotropic functionally graded hollow cylinder in vacuum", Ultrasonics, 51(2), 123-130. https://doi.org/10.1016/j.ultras.2010.07.001
- Batra, R.C. and Jin, J. (2005), "Natural frequencies of a functionally graded anisotropic rectangular plate", J. Sound Vib., 282(1), 509-516. https://doi.org/10.1016/j.jsv.2004.03.068
- Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
- Chen, J., Soh, A.K., Liu, J. and Liu, Z. (2004a), "Thermal fracture analysis of a functionally graded orthotropic strip with a crack", Int. J. Mech. Mater. Des., 1(2), 131-141. https://doi.org/10.1007/s10999-004-1489-9
- Chen, W.Q., Bian, Z.G. and Ding, H.J. (2004b), "Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells", Int. J. Mech. Sci., 46(1), 159-171. https://doi.org/10.1016/j.ijmecsci.2003.12.005
- Civalek, O. (2008), "Vibration analysis of conical panels using the method of discrete singular convolution", Comm. Numer. Meth. Eng., 24(3), 169-181.
- Croll, J.G.A. (2001), "Buckling of cylindrical tunnel liners", J. Eng. Mech., 127(4), 333-341. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(333)
- Eslami, M.R. and Shariyat, M. (1999), "A higher-order theory for dynamic buckling and postbuckling analysis of laminated cylindrical shells", J. Press. Vess. T.-ASME, 121(1), 94-102. https://doi.org/10.1115/1.2883673
- Ferreira, A.J.M., Roque, C.M.C., Neves, A.M.A., Jorge, R.M.N., Soares, C.M.M. and Reddy, J.N. (2011), "Buckling analysis of isotropic and laminated plates by radial basis functions according to a higher-order shear deformation theory", Thin-Wall. Struct., 49(7), 804-811. https://doi.org/10.1016/j.tws.2011.02.005
- Firouz-Abadi, R.D., Torkaman-Asadi, M.A. and Rahmanian, M. (2013), "Whirling frequencies of thin spinning cylindrical shells surrounded by an elastic foundation", Acta Mech., 224(4), 881-892. https://doi.org/10.1007/s00707-012-0802-1
- Fok, S.L. (2002), "Analysis of the buckling of long cylindrical shells embedded in an elastic medium using the energy method", J. Strain Anal. Eng. Design, 37(5), 375-383. https://doi.org/10.1243/030932402760203847
- Gorbunov-Possadov, M.I., Malikova, T.A. and Solomin, V.I. (1984), Design of Structures on Elastic Foundation, Strojizdat, Moscow, Russia.
- Grigorenko, Y.M. and Grigorenko, A.Y. (2013), "Static and dynamic problems for anisotropic inhomogeneous shells with variable parameters and their numerical solution (review)", Int. Appl. Mech., 49(2), 123-193. https://doi.org/10.1007/s10778-013-0558-x
- Grigorenko, Y.M. and Vasilenko, A.T. (1992), Static Problems for Anisotropic Inhomogeneous Shells, Nauka, Moscow, Russia.
- Han, B. and Simitses, G.J. (1991), "Analysis of anisotropic laminated cylindrical shells subjected to destabilizing loads. Part II: Numerical results", Compos. Struct., 19(2), 183-205. https://doi.org/10.1016/0263-8223(91)90022-Q
- Hui, D. (1986), "Imperfection-sensitivity of elastically supported beams and its relation to the double-cusp instability model", Proc. Roy. Soc. Lond. Math. Phys. Sci., 405(1828), 143-158. https://doi.org/10.1098/rspa.1986.0046
- Hui, D. and Hansen, J.S. (1980), "Two-mode buckling of an elastically supported plate and its relation to catastrophe-theory", J. Appl. Mech., 47(3), 607-612. https://doi.org/10.1115/1.3153741
- Jung, W.Y. and Han, S.C. (2014) "Shear buckling responses of laminated composite shells using a modified 8-node ANS shell element", Compos. Struct., 109, 119-129. https://doi.org/10.1016/j.compstruct.2013.10.055
- Kar, A. and Kanoria, M. (2009), "Generalized thermoelastic functionally graded orthotropic hollow sphere under thermal shock with three-phase-lag effect", Europe J. Mech. A-Solids, 28(4), 757-767. https://doi.org/10.1016/j.euromechsol.2009.01.003
- Kardomateas, G.A. (1997), "Koiter-based solution for the initial postbuckling behavior of moderately thick orthotropic and shear deformable cylindrical shells under external pressure", J. Appl. Mech., 64(4), 885-896. https://doi.org/10.1115/1.2788996
- Kasagi, A. and Sridharan, S. (1993), "Buckling and post-buckling analysis of thick composite cylindrical shells under hydrostatic pressure" Compos. Eng., 3(5), 467-487. https://doi.org/10.1016/0961-9526(93)90082-U
- Kumar, Y. and Lal, R. (2012), "Vibrations of non-homogeneous orthotropic rectangular plates with bilinear thickness variation resting on Winkler foundation", Meccanica, 47(4), 893-915. https://doi.org/10.1007/s11012-011-9459-4
- Li, Z.M. and Lin, Z.Q. (2010), "Non-linear buckling and postbuckling of shear deformable anisotropic laminated cylindrical shell subjected to varying external pressure loads", Compos. Struct. 92(2), 553-567. https://doi.org/10.1016/j.compstruct.2009.08.048
- Lomakin, V.A. (1976), The Elasticity Theory of Non-homogeneous Materials, Nauka, Moscow, Russia.
- Mantari, J.L. and Soares, C.G. (2014), "Optimized sinusoidal higher order shear deformation theory for the analysis of functionally graded plates and shells", Compos. B Eng., 56(1), 126-136. https://doi.org/10.1016/j.compositesb.2013.07.027
- Morimoto, T. and Tanigawa, Y. (2007), "Elastic stability of inhomogeneous thin plates on an elastic foundation", Arch. Appl. Mech., 77(9), 653-674. https://doi.org/10.1007/s00419-007-0117-1
- Naili, S. and Oddou, C. (2000), "Buckling of short cylindrical shell surrounded by an elastic medium", J. Appl. Mech., 67(1), 212-214. https://doi.org/10.1115/1.321173
- Najafov, A.M., Sofiyev, A.H. and Kuruoglu, N. (2013), "Torsional vibration and stability of functionally graded orthotropic cylindrical shells on elastic foundations", Meccanica, 48(4), 829-840. https://doi.org/10.1007/s11012-012-9636-0
- Ng, T.Y. and Lam, K.Y. (1999), "Effects of elastic foundation on the dynamic stability of cylindrical shells", Struct. Eng. Mech., Int. J., 8(2), 193-205. https://doi.org/10.12989/sem.1999.8.2.193
- Ootao, Y. and Tanigawa, Y. (2007), "Three-dimensional solution for transient thermal stresses of an orthotropic functionally graded rectangular plate", Compos. Struct., 80(1), 10-20. https://doi.org/10.1016/j.compstruct.2006.02.028
- Palazotto, A.N. and Linnemann, P.E. (1991), "Vibration and buckling characteristics of composite cylindrical panels incorporating the effects of a higher-order shear theory", Int. J. Solid. Struct., 28(3), 341-361. https://doi.org/10.1016/0020-7683(91)90198-O
- Paliwal, D.N. and Pandey, R.K. (2001), "Free vibrations of an orthotropic thin cylindrical shell on a Pasternak foundation", AIAA J., 39(11), 2188-2191. https://doi.org/10.2514/2.1216
- Pan, E. (2003), "Exact solution for functionally graded anisotropic elastic composite laminates", J. Compos. Mater., 37(21), 1903-1920. https://doi.org/10.1177/002199803035565
- Pelletier, J.L. and Vel, S.S. (2006), "An exact solution for the steady-state thermoelastic response of functionally graded orthotropic cylindrical shells", Int. J. Solid. Struct., 43(5), 1131-1158. https://doi.org/10.1016/j.ijsolstr.2005.03.079
- Peng, X.L. and Li, X.F. (2012), "Elastic analysis of rotating functionally graded polar orthotropic disks", Int. J. Mech. Sci., 60(1), 84-91. https://doi.org/10.1016/j.ijmecsci.2012.04.014
- Ramirez, F., Heyliger, P.R. and Pan, E. (2006), "Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach", Compos. B Eng., 37(1), 10-20. https://doi.org/10.1016/j.compositesb.2005.05.009
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, New York, USA.
- Shariyat, M. and Asemi, K. (2014), "Three-dimensional non-linear elasticity-based 3D cubic B-spline finite element shear buckling analysis of rectangular orthotropic FGM plates surrounded by elastic foundations", Compos. B Eng., 56, 934-947. https://doi.org/10.1016/j.compositesb.2013.09.027
- Shen, H.S. (2008), "Boundary layer theory for the buckling and postbuckling of an anisotropic laminated cylindrical shell. Part II: Prediction under external pressure", Compos. Struct., 82(3), 362-370. https://doi.org/10.1016/j.compstruct.2007.01.018
- Shen, H.S. (2013), "Postbuckling of axially-loaded laminated cylindrical shells surrounded by an elastic medium", Mech. Adv. Mater. Struct., 20(2), 130-150. https://doi.org/10.1080/15376494.2011.584141
- Shen, H.S. and Noda, N. (2007), "Post-buckling of pressure-loaded FGM hybrid cylindrical shells in thermal environments", Compos. Struct., 77(4), 546-560. https://doi.org/10.1016/j.compstruct.2005.08.006
- Shen, H.S. and Wang, H. (2013), "Thermal postbuckling of functionally graded fiber reinforced composite cylindrical shells surrounded by an elastic medium", Compos. Struct., 102, 250-260. https://doi.org/10.1016/j.compstruct.2013.03.011
- Shirakawa, K. (1983), "Effects of shear deformation and rotatory inertia on vibration and buckling of cylindrical shells", J. Sound Vib., 91(3), 425-437. https://doi.org/10.1016/0022-460X(83)90289-4
- Sofiyev, A.H. (2011), "Thermal buckling of FGM shells resting on a two parameter elastic foundation", Thin-Wall. Struct., 49(10), 1304-1311. https://doi.org/10.1016/j.tws.2011.03.018
- Sofiyev, A.H. and Kuruoglu, N. (2014), "Buckling and vibration of shear deformable functionally graded orthotropic cylindrical shells under external pressures", Thin-Wall. Struct., 78, 121-130. https://doi.org/10.1016/j.tws.2014.01.009
- Sofiyev, A.H. and Marandi, B. (1996), "Dynamic stability problem of non-homogeneous cylindrical shells on elastic foundations", Proc. Inst. Math. Mech. Academy Sci. Azerbaijan, 5(8), 128-131. [In Russian]
- Sofiyev, A.H., Omurtag, M.H. and Schnack, E. (2009), "The vibration and stability of orthotropic conical shells with non-homogeneous material properties under a hydrostatic pressure", J. Sound Vib., 319(3-5), 963-983. https://doi.org/10.1016/j.jsv.2008.06.033
- Sofiyev, A.H., Schnack, E., Haciyev, V.C. and Kuruoglu, N. (2012), "Effect of the two-parameter elastic foundation on the critical parameters of non-homogeneous orthotropic shells", Int. J. Struct. Stabil. Dynam., 12(5), 24 p.
- Sofiyev, A.H., Deniz, A., Ozyigit, P. and Pinarlik, M. (2014), "Stability analysis of clamped nonhomogeneous shells on the elastic foundation", Acta Phys. Pol., 125(2), 459-461. https://doi.org/10.12693/APhysPolA.125.459
- Soldatos, K.P. and Timarci, T. (1993), "A unified formulation of laminated composite, shear deformable, five-degrees-of-freedom cylindrical shell theories", Compos. Struct., 25(1-4), 165-171. https://doi.org/10.1016/0263-8223(93)90162-J
- Thai, H.T. and Choi, D.H. (2012), "A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation", Compos. B Eng., 43(5), 2335-2347. https://doi.org/10.1016/j.compositesb.2011.11.062
- Tornabene, F. (2011), "Free vibrations of anisotropic doubly-curved shells and panels of revolution with a free-form meridian resting on Winkler-Pasternak elastic foundations", Compos. Struct., 94(1), 186-206. https://doi.org/10.1016/j.compstruct.2011.07.002
- Tornabene, F., Fantuzzi, N., Viola, E. and Reddy, J.N. (2014), "Winkler-Pasternak foundation effect on the static and dynamic analyses of laminated doubly-curved and degenerate shells and panels", Compos. B Eng., 57, 269-296. https://doi.org/10.1016/j.compositesb.2013.06.020
- Wosu, S.N., Hui, D. and Daniel, L. (2012), "Hygrothermal effects on the dynamic compressive properties of graphite/epoxy composite material", Compos. B Eng., 43(3), 841-855. https://doi.org/10.1016/j.compositesb.2011.11.045
- Zenkour, A.M., Alam, M.N.M. and Radwan, A.F. (2013), "Bending of cross-ply laminated plates resting on elastic foundations under thermo-mechanical loading", Int. J. Mech. Mater. Des., 9(3), 239-251. https://doi.org/10.1007/s10999-012-9212-8
피인용 문헌
- The nonlinear vibration of orthotropic functionally graded cylindrical shells surrounded by an elastic foundation within first order shear deformation theory vol.116, 2017, https://doi.org/10.1016/j.compositesb.2017.02.006
- Buckling behaviours of functionally graded polymeric thin-walled hemispherical shells vol.21, pp.4, 2016, https://doi.org/10.12989/scs.2016.21.4.849
- Nonlinear bending analysis of FG-GRC laminated cylindrical panels on elastic foundations in thermal environments vol.141, 2018, https://doi.org/10.1016/j.compositesb.2017.12.048
- Combined influences of shear deformation, rotary inertia and heterogeneity on the frequencies of cross-ply laminated orthotropic cylindrical shells vol.66, 2014, https://doi.org/10.1016/j.compositesb.2014.06.015
- The vibration and buckling of sandwich cylindrical shells covered by different coatings subjected to the hydrostatic pressure vol.117, 2014, https://doi.org/10.1016/j.compstruct.2014.06.025
- A review of recent researches on FGM cylindrical structures under coupled physical interactions, 2000–2015 vol.152, 2016, https://doi.org/10.1016/j.compstruct.2016.05.042
- Nonlinear dynamic thermoelastic response of rectangular FGM plates with longitudinal velocity vol.117, 2017, https://doi.org/10.1016/j.compositesb.2017.02.037
- Non-linear buckling analysis of FGM toroidal shell segments filled inside by an elastic medium under external pressure loads including temperature effects vol.87, 2016, https://doi.org/10.1016/j.compositesb.2015.10.021
- A computational shear displacement model for vibrational analysis of functionally graded beams with porosities vol.19, pp.2, 2015, https://doi.org/10.12989/scs.2015.19.2.369
- Response of VSCL plates under moving load using a mixed integral-differential quadrature and novel NURBS based multi-step method 2018, https://doi.org/10.1016/j.compositesb.2017.07.066
- Viscous fluid induced vibration and instability of FG-CNT-reinforced cylindrical shells integrated with piezoelectric layers vol.19, pp.3, 2015, https://doi.org/10.12989/scs.2015.19.3.713
- Influences of shear stresses on the dynamic instability of exponentially graded sandwich cylindrical shells vol.77, 2015, https://doi.org/10.1016/j.compositesb.2015.03.040
- Influences of shear stresses and rotary inertia on the vibration of functionally graded coated sandwich cylindrical shells resting on the Pasternak elastic foundation vol.17, pp.6, 2015, https://doi.org/10.1177/1099636215594560
- Vibration and nonlinear dynamic response of eccentrically stiffened functionally graded composite truncated conical shells surrounded by an elastic medium in thermal environments pp.1619-6937, 2018, https://doi.org/10.1007/s00707-018-2282-4
- Ant colony optimization for dynamic stability of laminated composite plates vol.25, pp.1, 2014, https://doi.org/10.12989/scs.2017.25.1.105