DOI QR코드

DOI QR Code

Stability of EG cylindrical shells with shear stresses on a Pasternak foundation

  • Najafov, A.M. (Institute for Machine Elements and Lifting-and-Shifting Machines of Azerbaijan Technical University) ;
  • Sofiyev, A.H. (Department of Civil Engineering, Engineering Faculty, Suleyman Demirel University) ;
  • Hui, D. (Department of Mechanical Engineering, University of New Orleans) ;
  • Karaca, Z. (Department of Civil Engineering, Ondokuz Mayis University) ;
  • Kalpakci, V. (Department of Civil Engineering, Hasan Kalyoncu University) ;
  • Ozcelik, M. (Department of Geological Engineering, Suleyman Demirel University)
  • 투고 : 2014.02.22
  • 심사 : 2014.03.23
  • 발행 : 2014.10.25

초록

This article is the result of an investigation on the influence of a Pasternak elastic foundation on the stability of exponentially graded (EG) cylindrical shells under hydrostatic pressure, based on the first-order shear deformation theory (FOSDT) considering the shear stresses. The shear stresses shape function is distributed parabolic manner through the shell thickness. The governing equations of EG orthotropic cylindrical shells resting on the Pasternak elastic foundation on the basis of FOSDT are derived in the framework of Donnell-type shell theory. The novelty of present work is to achieve closed-form solutions for critical hydrostatic pressures of EG orthotropic cylindrical shells resting on Pasternak elastic foundation based on FOSDT. The expressions for critical hydrostatic pressures of EG orthotropic cylindrical shells with and without an elastic foundation based on CST are obtained, in special cases. Finally, the effects of Pasternak foundation, shear stresses, orthotropy and heterogeneity on critical hydrostatic pressures, based on FOSDT are investigated.

키워드

참고문헌

  1. Adany, S. (2014), "Flexural buckling of simply-supported thin-walled columns with consideration of membrane shear deformations: Analytical solutions based on shell model", Thin-Wall. Struct., 74, 36-48. https://doi.org/10.1016/j.tws.2013.09.014
  2. Akoz, A.Y. and Ergun, H. (2012), "Analysis of partially embedded beams in two-parameter foundation", Struct. Eng. Mech., Int. J., 42(1), 1-12. https://doi.org/10.12989/sem.2012.42.1.001
  3. Alipour, M.M., Shariyat, M. and Shaban, M. (2010), "A semi-analytical solution for free vibration of variable thickness two-directional-functionally graded plates on elastic foundations", Int. J. Mech. Mater. Des., 6(4), 293-304. https://doi.org/10.1007/s10999-010-9134-2
  4. Ambartsumian, S.A. (1964), Theory of Anisotropic Plates; Strength, Stability, Vibration, Technomic, Stamford, USA.
  5. Asadi, E. and Qatu, M.S. (2012), "Static analysis of thick laminated shells with different boundary conditions using GDQ", Thin-Wall. Struct., 51, 76-81. https://doi.org/10.1016/j.tws.2011.11.004
  6. Atmane, H.A., Tounsi, A., Mechab, I. and Bedia, E.A.A. (2010), "Free vibration analysis of functionally graded plates resting on Winkler-Pasternak elastic foundations using a new shear deformation theory", Int. J. Mech. Mater. Des., 6(2), 113-121. https://doi.org/10.1007/s10999-010-9110-x
  7. Bagherizadeh, E., Kiani, Y. and Eslami, M.R. (2011), "Mechanical buckling of functionally graded material cylindrical shells surrounded by Pasternak elastic foundation", Compos. Struct., 93(11), 3063-3071. https://doi.org/10.1016/j.compstruct.2011.04.022
  8. Baron, C. (2011), "Propagation of elastic waves in an anisotropic functionally graded hollow cylinder in vacuum", Ultrasonics, 51(2), 123-130. https://doi.org/10.1016/j.ultras.2010.07.001
  9. Batra, R.C. and Jin, J. (2005), "Natural frequencies of a functionally graded anisotropic rectangular plate", J. Sound Vib., 282(1), 509-516. https://doi.org/10.1016/j.jsv.2004.03.068
  10. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  11. Chen, J., Soh, A.K., Liu, J. and Liu, Z. (2004a), "Thermal fracture analysis of a functionally graded orthotropic strip with a crack", Int. J. Mech. Mater. Des., 1(2), 131-141. https://doi.org/10.1007/s10999-004-1489-9
  12. Chen, W.Q., Bian, Z.G. and Ding, H.J. (2004b), "Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells", Int. J. Mech. Sci., 46(1), 159-171. https://doi.org/10.1016/j.ijmecsci.2003.12.005
  13. Civalek, O. (2008), "Vibration analysis of conical panels using the method of discrete singular convolution", Comm. Numer. Meth. Eng., 24(3), 169-181.
  14. Croll, J.G.A. (2001), "Buckling of cylindrical tunnel liners", J. Eng. Mech., 127(4), 333-341. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(333)
  15. Eslami, M.R. and Shariyat, M. (1999), "A higher-order theory for dynamic buckling and postbuckling analysis of laminated cylindrical shells", J. Press. Vess. T.-ASME, 121(1), 94-102. https://doi.org/10.1115/1.2883673
  16. Ferreira, A.J.M., Roque, C.M.C., Neves, A.M.A., Jorge, R.M.N., Soares, C.M.M. and Reddy, J.N. (2011), "Buckling analysis of isotropic and laminated plates by radial basis functions according to a higher-order shear deformation theory", Thin-Wall. Struct., 49(7), 804-811. https://doi.org/10.1016/j.tws.2011.02.005
  17. Firouz-Abadi, R.D., Torkaman-Asadi, M.A. and Rahmanian, M. (2013), "Whirling frequencies of thin spinning cylindrical shells surrounded by an elastic foundation", Acta Mech., 224(4), 881-892. https://doi.org/10.1007/s00707-012-0802-1
  18. Fok, S.L. (2002), "Analysis of the buckling of long cylindrical shells embedded in an elastic medium using the energy method", J. Strain Anal. Eng. Design, 37(5), 375-383. https://doi.org/10.1243/030932402760203847
  19. Gorbunov-Possadov, M.I., Malikova, T.A. and Solomin, V.I. (1984), Design of Structures on Elastic Foundation, Strojizdat, Moscow, Russia.
  20. Grigorenko, Y.M. and Grigorenko, A.Y. (2013), "Static and dynamic problems for anisotropic inhomogeneous shells with variable parameters and their numerical solution (review)", Int. Appl. Mech., 49(2), 123-193. https://doi.org/10.1007/s10778-013-0558-x
  21. Grigorenko, Y.M. and Vasilenko, A.T. (1992), Static Problems for Anisotropic Inhomogeneous Shells, Nauka, Moscow, Russia.
  22. Han, B. and Simitses, G.J. (1991), "Analysis of anisotropic laminated cylindrical shells subjected to destabilizing loads. Part II: Numerical results", Compos. Struct., 19(2), 183-205. https://doi.org/10.1016/0263-8223(91)90022-Q
  23. Hui, D. (1986), "Imperfection-sensitivity of elastically supported beams and its relation to the double-cusp instability model", Proc. Roy. Soc. Lond. Math. Phys. Sci., 405(1828), 143-158. https://doi.org/10.1098/rspa.1986.0046
  24. Hui, D. and Hansen, J.S. (1980), "Two-mode buckling of an elastically supported plate and its relation to catastrophe-theory", J. Appl. Mech., 47(3), 607-612. https://doi.org/10.1115/1.3153741
  25. Jung, W.Y. and Han, S.C. (2014) "Shear buckling responses of laminated composite shells using a modified 8-node ANS shell element", Compos. Struct., 109, 119-129. https://doi.org/10.1016/j.compstruct.2013.10.055
  26. Kar, A. and Kanoria, M. (2009), "Generalized thermoelastic functionally graded orthotropic hollow sphere under thermal shock with three-phase-lag effect", Europe J. Mech. A-Solids, 28(4), 757-767. https://doi.org/10.1016/j.euromechsol.2009.01.003
  27. Kardomateas, G.A. (1997), "Koiter-based solution for the initial postbuckling behavior of moderately thick orthotropic and shear deformable cylindrical shells under external pressure", J. Appl. Mech., 64(4), 885-896. https://doi.org/10.1115/1.2788996
  28. Kasagi, A. and Sridharan, S. (1993), "Buckling and post-buckling analysis of thick composite cylindrical shells under hydrostatic pressure" Compos. Eng., 3(5), 467-487. https://doi.org/10.1016/0961-9526(93)90082-U
  29. Kumar, Y. and Lal, R. (2012), "Vibrations of non-homogeneous orthotropic rectangular plates with bilinear thickness variation resting on Winkler foundation", Meccanica, 47(4), 893-915. https://doi.org/10.1007/s11012-011-9459-4
  30. Li, Z.M. and Lin, Z.Q. (2010), "Non-linear buckling and postbuckling of shear deformable anisotropic laminated cylindrical shell subjected to varying external pressure loads", Compos. Struct. 92(2), 553-567. https://doi.org/10.1016/j.compstruct.2009.08.048
  31. Lomakin, V.A. (1976), The Elasticity Theory of Non-homogeneous Materials, Nauka, Moscow, Russia.
  32. Mantari, J.L. and Soares, C.G. (2014), "Optimized sinusoidal higher order shear deformation theory for the analysis of functionally graded plates and shells", Compos. B Eng., 56(1), 126-136. https://doi.org/10.1016/j.compositesb.2013.07.027
  33. Morimoto, T. and Tanigawa, Y. (2007), "Elastic stability of inhomogeneous thin plates on an elastic foundation", Arch. Appl. Mech., 77(9), 653-674. https://doi.org/10.1007/s00419-007-0117-1
  34. Naili, S. and Oddou, C. (2000), "Buckling of short cylindrical shell surrounded by an elastic medium", J. Appl. Mech., 67(1), 212-214. https://doi.org/10.1115/1.321173
  35. Najafov, A.M., Sofiyev, A.H. and Kuruoglu, N. (2013), "Torsional vibration and stability of functionally graded orthotropic cylindrical shells on elastic foundations", Meccanica, 48(4), 829-840. https://doi.org/10.1007/s11012-012-9636-0
  36. Ng, T.Y. and Lam, K.Y. (1999), "Effects of elastic foundation on the dynamic stability of cylindrical shells", Struct. Eng. Mech., Int. J., 8(2), 193-205. https://doi.org/10.12989/sem.1999.8.2.193
  37. Ootao, Y. and Tanigawa, Y. (2007), "Three-dimensional solution for transient thermal stresses of an orthotropic functionally graded rectangular plate", Compos. Struct., 80(1), 10-20. https://doi.org/10.1016/j.compstruct.2006.02.028
  38. Palazotto, A.N. and Linnemann, P.E. (1991), "Vibration and buckling characteristics of composite cylindrical panels incorporating the effects of a higher-order shear theory", Int. J. Solid. Struct., 28(3), 341-361. https://doi.org/10.1016/0020-7683(91)90198-O
  39. Paliwal, D.N. and Pandey, R.K. (2001), "Free vibrations of an orthotropic thin cylindrical shell on a Pasternak foundation", AIAA J., 39(11), 2188-2191. https://doi.org/10.2514/2.1216
  40. Pan, E. (2003), "Exact solution for functionally graded anisotropic elastic composite laminates", J. Compos. Mater., 37(21), 1903-1920. https://doi.org/10.1177/002199803035565
  41. Pelletier, J.L. and Vel, S.S. (2006), "An exact solution for the steady-state thermoelastic response of functionally graded orthotropic cylindrical shells", Int. J. Solid. Struct., 43(5), 1131-1158. https://doi.org/10.1016/j.ijsolstr.2005.03.079
  42. Peng, X.L. and Li, X.F. (2012), "Elastic analysis of rotating functionally graded polar orthotropic disks", Int. J. Mech. Sci., 60(1), 84-91. https://doi.org/10.1016/j.ijmecsci.2012.04.014
  43. Ramirez, F., Heyliger, P.R. and Pan, E. (2006), "Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach", Compos. B Eng., 37(1), 10-20. https://doi.org/10.1016/j.compositesb.2005.05.009
  44. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, New York, USA.
  45. Shariyat, M. and Asemi, K. (2014), "Three-dimensional non-linear elasticity-based 3D cubic B-spline finite element shear buckling analysis of rectangular orthotropic FGM plates surrounded by elastic foundations", Compos. B Eng., 56, 934-947. https://doi.org/10.1016/j.compositesb.2013.09.027
  46. Shen, H.S. (2008), "Boundary layer theory for the buckling and postbuckling of an anisotropic laminated cylindrical shell. Part II: Prediction under external pressure", Compos. Struct., 82(3), 362-370. https://doi.org/10.1016/j.compstruct.2007.01.018
  47. Shen, H.S. (2013), "Postbuckling of axially-loaded laminated cylindrical shells surrounded by an elastic medium", Mech. Adv. Mater. Struct., 20(2), 130-150. https://doi.org/10.1080/15376494.2011.584141
  48. Shen, H.S. and Noda, N. (2007), "Post-buckling of pressure-loaded FGM hybrid cylindrical shells in thermal environments", Compos. Struct., 77(4), 546-560. https://doi.org/10.1016/j.compstruct.2005.08.006
  49. Shen, H.S. and Wang, H. (2013), "Thermal postbuckling of functionally graded fiber reinforced composite cylindrical shells surrounded by an elastic medium", Compos. Struct., 102, 250-260. https://doi.org/10.1016/j.compstruct.2013.03.011
  50. Shirakawa, K. (1983), "Effects of shear deformation and rotatory inertia on vibration and buckling of cylindrical shells", J. Sound Vib., 91(3), 425-437. https://doi.org/10.1016/0022-460X(83)90289-4
  51. Sofiyev, A.H. (2011), "Thermal buckling of FGM shells resting on a two parameter elastic foundation", Thin-Wall. Struct., 49(10), 1304-1311. https://doi.org/10.1016/j.tws.2011.03.018
  52. Sofiyev, A.H. and Kuruoglu, N. (2014), "Buckling and vibration of shear deformable functionally graded orthotropic cylindrical shells under external pressures", Thin-Wall. Struct., 78, 121-130. https://doi.org/10.1016/j.tws.2014.01.009
  53. Sofiyev, A.H. and Marandi, B. (1996), "Dynamic stability problem of non-homogeneous cylindrical shells on elastic foundations", Proc. Inst. Math. Mech. Academy Sci. Azerbaijan, 5(8), 128-131. [In Russian]
  54. Sofiyev, A.H., Omurtag, M.H. and Schnack, E. (2009), "The vibration and stability of orthotropic conical shells with non-homogeneous material properties under a hydrostatic pressure", J. Sound Vib., 319(3-5), 963-983. https://doi.org/10.1016/j.jsv.2008.06.033
  55. Sofiyev, A.H., Schnack, E., Haciyev, V.C. and Kuruoglu, N. (2012), "Effect of the two-parameter elastic foundation on the critical parameters of non-homogeneous orthotropic shells", Int. J. Struct. Stabil. Dynam., 12(5), 24 p.
  56. Sofiyev, A.H., Deniz, A., Ozyigit, P. and Pinarlik, M. (2014), "Stability analysis of clamped nonhomogeneous shells on the elastic foundation", Acta Phys. Pol., 125(2), 459-461. https://doi.org/10.12693/APhysPolA.125.459
  57. Soldatos, K.P. and Timarci, T. (1993), "A unified formulation of laminated composite, shear deformable, five-degrees-of-freedom cylindrical shell theories", Compos. Struct., 25(1-4), 165-171. https://doi.org/10.1016/0263-8223(93)90162-J
  58. Thai, H.T. and Choi, D.H. (2012), "A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation", Compos. B Eng., 43(5), 2335-2347. https://doi.org/10.1016/j.compositesb.2011.11.062
  59. Tornabene, F. (2011), "Free vibrations of anisotropic doubly-curved shells and panels of revolution with a free-form meridian resting on Winkler-Pasternak elastic foundations", Compos. Struct., 94(1), 186-206. https://doi.org/10.1016/j.compstruct.2011.07.002
  60. Tornabene, F., Fantuzzi, N., Viola, E. and Reddy, J.N. (2014), "Winkler-Pasternak foundation effect on the static and dynamic analyses of laminated doubly-curved and degenerate shells and panels", Compos. B Eng., 57, 269-296. https://doi.org/10.1016/j.compositesb.2013.06.020
  61. Wosu, S.N., Hui, D. and Daniel, L. (2012), "Hygrothermal effects on the dynamic compressive properties of graphite/epoxy composite material", Compos. B Eng., 43(3), 841-855. https://doi.org/10.1016/j.compositesb.2011.11.045
  62. Zenkour, A.M., Alam, M.N.M. and Radwan, A.F. (2013), "Bending of cross-ply laminated plates resting on elastic foundations under thermo-mechanical loading", Int. J. Mech. Mater. Des., 9(3), 239-251. https://doi.org/10.1007/s10999-012-9212-8

피인용 문헌

  1. The nonlinear vibration of orthotropic functionally graded cylindrical shells surrounded by an elastic foundation within first order shear deformation theory vol.116, 2017, https://doi.org/10.1016/j.compositesb.2017.02.006
  2. Buckling behaviours of functionally graded polymeric thin-walled hemispherical shells vol.21, pp.4, 2016, https://doi.org/10.12989/scs.2016.21.4.849
  3. Nonlinear bending analysis of FG-GRC laminated cylindrical panels on elastic foundations in thermal environments vol.141, 2018, https://doi.org/10.1016/j.compositesb.2017.12.048
  4. Combined influences of shear deformation, rotary inertia and heterogeneity on the frequencies of cross-ply laminated orthotropic cylindrical shells vol.66, 2014, https://doi.org/10.1016/j.compositesb.2014.06.015
  5. The vibration and buckling of sandwich cylindrical shells covered by different coatings subjected to the hydrostatic pressure vol.117, 2014, https://doi.org/10.1016/j.compstruct.2014.06.025
  6. A review of recent researches on FGM cylindrical structures under coupled physical interactions, 2000–2015 vol.152, 2016, https://doi.org/10.1016/j.compstruct.2016.05.042
  7. Nonlinear dynamic thermoelastic response of rectangular FGM plates with longitudinal velocity vol.117, 2017, https://doi.org/10.1016/j.compositesb.2017.02.037
  8. Non-linear buckling analysis of FGM toroidal shell segments filled inside by an elastic medium under external pressure loads including temperature effects vol.87, 2016, https://doi.org/10.1016/j.compositesb.2015.10.021
  9. A computational shear displacement model for vibrational analysis of functionally graded beams with porosities vol.19, pp.2, 2015, https://doi.org/10.12989/scs.2015.19.2.369
  10. Response of VSCL plates under moving load using a mixed integral-differential quadrature and novel NURBS based multi-step method 2018, https://doi.org/10.1016/j.compositesb.2017.07.066
  11. Viscous fluid induced vibration and instability of FG-CNT-reinforced cylindrical shells integrated with piezoelectric layers vol.19, pp.3, 2015, https://doi.org/10.12989/scs.2015.19.3.713
  12. Influences of shear stresses on the dynamic instability of exponentially graded sandwich cylindrical shells vol.77, 2015, https://doi.org/10.1016/j.compositesb.2015.03.040
  13. Influences of shear stresses and rotary inertia on the vibration of functionally graded coated sandwich cylindrical shells resting on the Pasternak elastic foundation vol.17, pp.6, 2015, https://doi.org/10.1177/1099636215594560
  14. Vibration and nonlinear dynamic response of eccentrically stiffened functionally graded composite truncated conical shells surrounded by an elastic medium in thermal environments pp.1619-6937, 2018, https://doi.org/10.1007/s00707-018-2282-4
  15. Ant colony optimization for dynamic stability of laminated composite plates vol.25, pp.1, 2014, https://doi.org/10.12989/scs.2017.25.1.105