DOI QR코드

DOI QR Code

Future Change Using the CMIP5 MME and Best Models: I. Near and Long Term Future Change of Temperature and Precipitation over East Asia

CMIP5 MME와 Best 모델의 비교를 통해 살펴본 미래전망: I. 동아시아 기온과 강수의 단기 및 장기 미래전망

  • Moon, Hyejin (Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University) ;
  • Kim, Byeong-Hee (Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University) ;
  • Oh, Hyoeun (Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University) ;
  • Lee, June-Yi (Institute of Environmental Studies, Pusan National University) ;
  • Ha, Kyung-Ja (Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University)
  • 문혜진 (부산대학교 지구환경시스템학부 대기과학전공) ;
  • 김병희 (부산대학교 지구환경시스템학부 대기과학전공) ;
  • 오효은 (부산대학교 지구환경시스템학부 대기과학전공) ;
  • 이준이 (부산대학교 환경연구원) ;
  • 하경자 (부산대학교 지구환경시스템학부 대기과학전공)
  • Received : 2014.06.18
  • Accepted : 2014.07.29
  • Published : 2014.09.30

Abstract

Future changes in seasonal mean temperature and precipitation over East Asia under anthropogenic global warming are investigated by comparing the historical run for 1979~2005 and the Representative Concentration Pathway (RCP) 4.5 run for 2006~2100 with 20 coupled models which participated in the phase five of Coupled Model Inter-comparison Project (CMIP5). Although an increase in future temperature over the East Asian monsoon region has been commonly accepted, the prediction of future precipitation under global warming still has considerable uncertainties with a large inter-model spread. Thus, we select best five models, based on the evaluation of models' performance in present climate for boreal summer and winter seasons, to reduce uncertainties in future projection. Overall, the CMIP5 models better simulate climatological temperature and precipitation over East Asia than the phase 3 of CMIP and the five best models' multi-model ensemble (B5MME) has better performance than all 20 models' multi-model ensemble (MME). Under anthropogenic global warming, significant increases are expected in both temperature and land-ocean thermal contrast over the entire East Asia region during both seasons for near and long term future. The contrast of future precipitation in winter between land and ocean will decrease over East Asia whereas that in summer particularly over the Korean Peninsula, associated with the Changma, will increase. Taking into account model validation and uncertainty estimation, this study has made an effort on providing a more reliable range of future change for temperature and precipitation particularly over the Korean Peninsula than previous studies.

Keywords

References

  1. Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979 - Present). J. Hydrometeor., 4, 1147-1167. https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
  2. Chu, J.-E., K.-J. Ha, J.-Y. Lee, B. Wang, B.-H. Kim, and C. E. Chung, 2014: Future change of the Indian Ocean basin-wide and dipole modes in the CMIP5. Clim. Dynam., 43, 535-551, doi:10.1007/s00382-013- 2002-7.
  3. Endo, H., A. Kitoh, T. Ose, R. Mizuta, and S. Kusunoki, 2012: Future changes and uncertainties in Asian precipitation simulated by multiphysics and multi-sea surface temperature ensemble experiments with highresolution Meteorological Research Institute atmospheric general circulation models (MRI-AGCMs). J. Geophys. Res., 117, 2286-2303.
  4. Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change, Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press, 663-745.
  5. Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686-5699. https://doi.org/10.1175/JCLI3990.1
  6. Heo, K.-Y., K.-J. Ha, K.-S. Yun, S.-S. Lee, H.-J. Kim, and B. Wang, 2014: Methods for uncertainty assessment of climate models and model predictions over East Asia. Int. J. Climatol., 34, 377-390, doi:10.1002/ joc.3692.
  7. Jung, Y.-R., D.-H. Choi, H.-J. Baek, and C. Cho, 2013: Changes in the Low Latitude Atmospheric Circulation at the End of the 21st Century Simulated by CMIP5 Models under Global Warming. Atmosphere, 23, 377-387 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2013.23.4.377
  8. Korea Meteorological Administration, 2012: Assessment Report on climate change over the Korean Peninsula. Korea Meteorological Administration. 22-23.
  9. Lee, E.-J., K.-J. Ha, and J.-G. Jhun, 2014a: Interdecadal changes in interannual variability of the global monsoon precipitation and interrelationships among its subcomponents. Clim. Dynam., 42, 2585-2601, doi: 10.1007/s00382-013-1762-4.
  10. Lee, J.-Y., and B. Wang, 2014: Future change of global monsoon in the CMIP5. Clim. Dynam., 42, 101-119. https://doi.org/10.1007/s00382-012-1564-0
  11. Lee, J.-Y., B. Wang, K.-H. Seo, J.-S. Kug, Y.-S. Choi, Y. Kosaka, and K.-J. Ha, 2014b: Future change of Northern Hemisphere summer tropical-extratropical teleconnection in CMIP5 models. J. Climate, 27, 3643-3664, doi:10.1175/JCLI-D-13-00261.1.
  12. Lee, J.-Y., and Coauthors, 2010: How are seasonal prediction skills related to models' performance on mean state and annual cycle?. Clim. Dynam., 35, 267-283, doi:10.1007/s00382-010-0857-4.
  13. Lee, J.-Y., B. Wang, Q. Ding, K.-J. Ha, J.-B. Ahn, A. Kumar, B. Stern, and O. Alves, 2011a: How predictable is the Northern Hemisphere summer upper-tropospheric circulation? Clim. Dyn., 37, 1189-1203. https://doi.org/10.1007/s00382-010-0909-9
  14. Lee, S.-S., J.-Y. Lee, K.-J. Ha, B. Wang, and J. K. E. Schemm, 2011b: Deficiencies and possibilities for long-lead coupled climate prediction of the western North Pacific-East Asian summer monsoon. Clim. Dyn., 36, 1173-1188. https://doi.org/10.1007/s00382-010-0832-0
  15. Meehl, G. A. and H. Teng, 2007: Multi-model changes in El Niño teleconnections over North America in a future warmer climate. Clim. Dynam., 29, 779-790, doi:10.1007/s00382-007-0268-3.
  16. Meehl, G. A., and Coauthors, 2007: Global climate projection. Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press, 747-846.
  17. Murakami, H., R. Mizuta, and E. Shindo, 2012: Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Clim. Dynam., 39, 2569-2584. https://doi.org/10.1007/s00382-011-1223-x
  18. NIMR, 2012: Global climate change report 2012. National Institute of Meteorological Research, 66-67.
  19. Oh, H., and K.-J. Ha, 2014: Thermodynamic characteristics and responses to ENSO of dominant intraseasonal modes in the East Asian summer monsoon. Clim. Dynam., doi:10.1007/s00382-014-2268-4.
  20. Seo, K.-H., J. Ok, J.-H. Son, and D.-H. Cha, 2013: Assessing future changes in the East Asian summer monsoon using CMIP5 coupled models. J. Climate, 26, 7662-7675. https://doi.org/10.1175/JCLI-D-12-00694.1
  21. Seo, Y.-W., H. Kim, K.-S. Yun, J.-Y. Lee, K.-J. Ha, and J.- Y. Moon, 2014: Future change of extreme temperature climate indices over East Asia with uncertainties estimation in the CMIP5. Asia-Pacific J. Atmos. Sci., in press. doi:10.1007/s13143-000-0000-0.
  22. Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou. 2013: The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim. Dynam., 41, 2711-2744. https://doi.org/10.1007/s00382-012-1607-6
  23. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485-498. https://doi.org/10.1175/BAMS-D-11-00094.1
  24. Wang, B., S.-Y. Yim, J.-Y. Lee, J. Liu, and K.-J. Ha, 2014: Future change of Asian-Australian monsoon under RCP 4.5 anthropogenic warming scenario. Clim. Dynam., 42, 83-100, doi:10.1007/s00382-013-1769.
  25. Xu, J., A. M. Powell Jr., and L. Zhao, 2013: Intercomparison of temperature trends in IPCC CMIP5 simulations with observations, reanalyses and CMIP3 models. Geoscientific Model Development, 6, 1705- 1714. https://doi.org/10.5194/gmd-6-1705-2013
  26. Yeh, S.-W., Y.-G. Ham, and J.-Y. Lee, 2012: Changes in the tropical Pacific SST trend from CMIP3 to CMIP5 and its implication of ENSO. J. Climate, 25, 7764- 7771, doi:10.1175/JCLI-D-12-00304.1.
  27. Yun, K.-S., S.-H. Shin, K.-J. Ha, A. Kitoh, and S. Kusunoki, 2008: East Asian precipitation change in the global warming climate simulated by a 20-km Mesh AGCM. Asia-Pac. J. Atmos. Sci., 44, 233-247.

Cited by

  1. Future Change Using the CMIP5 MME and Best Models: II. The Thermodynamic and Dynamic Analysis on Near and Long-Term Future Climate Change over East Asia vol.25, pp.2, 2015, https://doi.org/10.14191/Atmos.2015.25.2.249