DOI QR코드

DOI QR Code

Effects of Building-roof Cooling on Scalar Dispersion in Urban Street Canyons

도시 협곡에서 건물 지붕 냉각이 스칼라 물질 확산에 미치는 영향

  • Park, Soo-Jin (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kim, Jae-Jin (Department of Environmental Atmospheric Sciences, Pukyong National University)
  • 박수진 (부경대학교 환경대기과학과) ;
  • 김재진 (부경대학교 환경대기과학과)
  • Received : 2014.03.23
  • Accepted : 2014.06.23
  • Published : 2014.09.30

Abstract

In this study, the effects of building-roof cooling on scalar dispersion in three-dimensional street canyons are investigated using a computational fluid dynamics (CFD) model. For this, surface temperature of building roof is systematically changed and non-reactive pollutants are released from street bottom in urban street canyons with the aspect ratio of 1. The characteristics of flow, air temperature, and non-reactive pollutant dispersion in the control experiment are analyzed first. Then, the effects of building-roof cooling are investigated by comparing the results with those in the control experiment. In the control experiment, a portal vortex which is a secondary flow induced by ambient air flow is formed in each street canyon. Averaged air temperature is higher inside the street canyon than in both sides of the street canyon, because warmer air is coming into the street canyon from the roof level. However, air temperature near the street bottom is lower inside the street canyon due to the inflow of cooler air from both sides of the street canyon. As building-roof temperature decreases, wind speed at the roof level increases and portal vortex becomes intensified (that is, downdraft, reverse flow, and updraft becomes stronger). Building-roof cooling contributes to the reduction of average concentration of the non-reactive pollutants and average air temperature in the street canyon. The results imply that building-roof cooling has positive effects on improvement of thermal environment and air quality in urban areas.

Keywords

References

  1. Alexandria, E., and P. Jones, 2008: Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build. Environ., 43, 480- 493. https://doi.org/10.1016/j.buildenv.2006.10.055
  2. Asaeda, T., V. T. Ca, and A. Wake, 1996: Heat storage of pavement and its effect on the lower atmosphere. Atmos. Environ., 30, 413-427. https://doi.org/10.1016/1352-2310(94)00140-5
  3. Baik, J. J., and J. J. Kim, 2002: On the escape of pollutants from urban street canyons. Atmos. Environ., 36, 527-536. https://doi.org/10.1016/S1352-2310(01)00438-1
  4. Baik, J. J., S. B. Park, and J. J. Kim, 2009: Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model. J. Appl. Meteor. Climatol., 48, 1667-1681. https://doi.org/10.1175/2009JAMC2066.1
  5. Baik, J. J., K. H. Kwak, S. B. Park, and Y. H. Ryu, 2012: Effects of building roof greening on air quality in street canyons. Atmos. Environ., 61, 48-55. https://doi.org/10.1016/j.atmosenv.2012.06.076
  6. Castro, I. P., and D. D. Apsley, 1997: Flow and dispersion over topography: a comparison between numerical and laboratory data for two-dimensional flows. Atmos. Environ., 31, 893-850.
  7. Giridharan, R., S. S. Y. Lau, S. Ganesan, and B. Givoni, 2007: Urban design factors influencing heat island intensity in high-rise high-density environments of Hong Kong. Build. Environ., 42, 3669-3684. https://doi.org/10.1016/j.buildenv.2006.09.011
  8. Huang, H., R. Ooka, H. Chen, S. Kato, T. Takahashi, and T. Watanabe, 2008: CFD analysis on traffic-induced air pollutant dispersion under non-isothermal condition in a complex urban area in water. J. Wind Eng. Ind. Aerodynamics, 96, 1774-1788. https://doi.org/10.1016/j.jweia.2008.02.010
  9. Kang, Y. S., J. J. Baik, and J. J. Kim, 2008: Further studies of flow and reactive pollutant dispersion in a street canyon with bottom heating. Atmos. Environ., 42, 4964-4975. https://doi.org/10.1016/j.atmosenv.2008.02.013
  10. Kim, H. O., and J. M. Yeom, 2012: Effect of the urban land cover types on the surface temperature: Case study of Ilsan new city. Korean J. Remote Sens., 28, 203-214. https://doi.org/10.7780/kjrs.2012.28.2.203
  11. Kim, J. J., 2007: The effects of obstacle aspect ratio on surrounding flows. Atmosphere, 17, 381-391 (in Korean with English abstract).
  12. Kim, J. J., and J. J. Baik, 2005: Physical experiments to investigate the effects of street bottom heating and inflow turbulence on urban street-canyon flow. Adv. Atmos. Sci., 22, 230-237. https://doi.org/10.1007/BF02918512
  13. Kim, J. J., and J. J. Baik, 2010: Effects of street-bottom and building-roof heating on flow in three-dimensional street canyons. Adv. Atmos. Sci., 27, 513-527. https://doi.org/10.1007/s00376-009-9095-2
  14. Kim, J. J., J. J. Baik, and H. Y. Chun, 2001: Two-dimensional numerical modeling of flow and dispersion in the presence of hill and buildings. J. Wind Eng. Ind. Aerodynamics, 89, 947-966. https://doi.org/10.1016/S0167-6105(01)00092-7
  15. Kim, J. J., E. Pardyjak, D. Y. Kim, K. S. Han, and B. H. Kwon, 2014: Effects of building-roof cooling on flow and air temperature in urban street canyons. Asia- Pac. J. Atmos. Sci., 50, 365-375. https://doi.org/10.1007/s13143-014-0023-8
  16. Kim, S. B., E. H. Jung, and G. H. Kim, 2006: Analysis of street trees and heat island mosaic in Jung-gu, Daegu. J. Environ. Sci., 15, 325-332.
  17. Kolokotroni, M., and R. Giridharan, 2008: Urban heat island intensity in London: An investigation of the impact of physical characteristics on changes in outdoor air temperature during summer. Solar Energy, 82, 986-998. https://doi.org/10.1016/j.solener.2008.05.004
  18. Lee, D. G., S. W. Yoon, S. H. Oh, and S. W. Jang, 2005: The effect of temperature reduction as influenced by rooftop greening. J. Korean Soc. Environ. Restor. Technol., 8, 34-44.
  19. Lee, E. J., and J. H. Kim, 2012: A consideration of the correlation between the change of surface temperature on the roof and the adoption of the green roof vs non green roof: Application in DaeJeon area. J. Korean Solar Energy Soc., 32, 134-140. https://doi.org/10.7836/kses.2012.32.6.134
  20. Lee, K. G., and W. H. Hong, 2007: The study on the heat island and cool island according to trend toward higher temperature in urban: Case study oh Taegu metropolitian city. J. Archit. Inst. Korean, 23, 219- 228.
  21. Lee, W. S., S. G. Jung, K. H. Park, and K. T. Kim, 2010: Analysis of urban thermal environment for environment- friendly spatial plan. J. Korean Assoc. Geogr. Inform. Stud., 13, 142-154.
  22. Niachou, A., K. Papakonstantinou, M. Santamouris, A. Tsangrassoulis, and G. Mihalakakou, 2001: Analysis of the green roof thermal properties and investigation of its energy performance. Energ. Buildings, 33, 719- 729. https://doi.org/10.1016/S0378-7788(01)00062-7
  23. Offerle, B., I. Eliasson, C. S. B. Grimmond, and B. Holmer, 2007: Surface heating in relation to air temperature, wind and turbulence in an urban street canyon. Bound.-Layer Meteor., 122, 273-292. https://doi.org/10.1007/s10546-006-9099-8
  24. Park, S. B., 2004: Measurement and analysis of heat island in summer in Gwangju. J. Korean Solar Energy Soc., 24, 65-75.
  25. Patankar, S. V., 1980: Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York, 197 pp.
  26. Pavageau, M., and M. Schatzmann, 1999: Wind tunnel measurements of concentration fluctuations in an urban street canyon. Atmos. Environ., 33, 3961-3971. https://doi.org/10.1016/S1352-2310(99)00138-7
  27. Rosenfeld, A. H., H. Akbari, S. Bretz, B. L. Fishman, D. M. Kurn, D. Sailor, and H. Taha, 1995: Mitigation of urban heat islands: materials, utility program, updates. Energ. Buildings, 22, 255-265. https://doi.org/10.1016/0378-7788(95)00927-P
  28. Santamouris, M., N. Papanikolaou, I. Livada, I. Koronakis, C. Georgakis, A. Argiriou, and D. N. Assimakopoulos, 2001: On the impact of urban climate on the energy consumption of buildings. Solar Energy, 70, 201-216. https://doi.org/10.1016/S0038-092X(00)00095-5
  29. Schlunzen, K. H., and Coauthors, 2003: Flow and transport in the obstacle layer: First results of the microscale model MITRAS. J. Atmos. Chem., 44, 113-130. https://doi.org/10.1023/A:1022420130032
  30. Shashua-Bar, L., and M. E. Hoffman, 2002: The Green CTTC model for predicting the air temperature in small urban wooded sites. Build. Environ., 37, 1279- 1288. https://doi.org/10.1016/S0360-1323(01)00120-2
  31. Sini, J. F., S. Anquetin, and P. G. Mestayer, 1996: Pollutant dispersion and thermal effects in urban street canyons. Atmos. Environ., 30, 2659-2677. https://doi.org/10.1016/1352-2310(95)00321-5
  32. Takahashi, K., H. Yoshida, Y. Tanaka, N. Aotake, and F. Wang, 2004: Measurement of thermal environment in Kyoto city and its prediction by CFD simulation. Energ. Buildings, 36, 771-779. https://doi.org/10.1016/j.enbuild.2004.01.033
  33. Tewari, M., H. Kusaka, F. Chen, W. J. Coirier, S. Kim, A. A. Wyszogrodzki, and T. T. Warner, 2010: Impact of coupling a microscale computational fluid dynamics model with a mesoscale model on urban scale contaminant transport and dispersion. Atmos. Res., 96, 656-664. https://doi.org/10.1016/j.atmosres.2010.01.006
  34. Theodosiou, T. G., 2003: Summer period analysis of the performance of a planted roof as a passive cooling technique. Energ. Buildings, 35, 909-917. https://doi.org/10.1016/S0378-7788(03)00023-9
  35. Voogt, J. A., and T. R. Oke, 1998: Effects of urban surface geometry on remotely sensed surface temperature. Int. J. Remote Sens., 19, 895-920. https://doi.org/10.1080/014311698215784
  36. Versteeg, H. K., and W. Malalasekera, 1995: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Longman, Malaysia, 257 pp.
  37. Wong, N. H., Y. Chen, C. L. Ong, and A. Sia, 2003: Investigation of thermal benefits of rooftop garden in the tropical environment. Build. Environ., 38, 261-270. https://doi.org/10.1016/S0360-1323(02)00066-5
  38. Yakhot, V., S. A. Orszag, S. Thangam, T. B. Gatski, and C. G. Speziale, 1992: Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids, 4, 1510-1520. https://doi.org/10.1063/1.858424
  39. Yeo, I. A., and S. H. Yoon, 2009: Numerical simulation on the urban heat island effect formed by urban planning elements in summer. J. Archit. Inst. Korean, 29, 557-580.