DOI QR코드

DOI QR Code

Pothole Detection Method in Asphalt Pavement

아스팔트 도로의 포트홀 검출 방법

  • Kim, Young-Ro (Dept. of Computer Science and Information, Myongji College) ;
  • Kim, Taehyeong (SOC Research Institute, Korea Institute of Construction Technology) ;
  • Ryu, Seungki (SOC Research Institute, Korea Institute of Construction Technology)
  • 김영로 (명지전문대학 컴퓨터정보과) ;
  • 김태형 (한국건설기술연구원 SOC성능연구소) ;
  • 류승기 (한국건설기술연구원 SOC성능연구소)
  • Received : 2014.08.22
  • Accepted : 2014.09.30
  • Published : 2014.10.25

Abstract

In this paper, we propose a pothole detection method in asphalt pavement using various features. Segmentation, candidate, and decision steps of pothole detection are processed according to the values which are derived from feature characteristics. Segmentation step, we use histogram and closing operation of morphology filter which extracts dark regions for pothole detection. Candidate step, we extract candidate regions of pothole using various features such as size, compactness, etc. Finally, decision step, candidate regions are decided whether pothole or not using comparison of pothole and background's features. Experimental results show that our proposed pothole detection method has better results than existing methods and good performance in discrimination of pothole and similar patterns.

본 논문에서는 다양한 특징점들을 이용하여 아스팔트 도로의 포트홀을 검출하는 방법을 제안한다. 포트홀 검출에서의 분할, 후보, 결정 단계 들은 특징점 들의 특성에 따라 추출된 값들에 의해 처리된다. 분할 단계에서는 히스토그램과 형태학 필터의 닫힘 연산을 이용하여 포트홀 검출을 위한 어두운 영역을 추출한다. 후보 단계에서는 포트홀 후보 영역을 정하기 위하여 크기, 밀도 등 다양한 특징점들을 이용하여 포트홀 후보 영역을 추출한다. 또한 마지막 결정 단계에서는 후보 영역과 배경 영역과의 특징점들의 비교를 통해서 후보 영역이 포트홀 여부를 판단한다. 실험 결과, 제안하는 방법이 기존 포트홀 검출 방법 보다 향상된 결과를 보이고 포트홀과 유사한 형태들과 구분하는 향상된 결과를 보인다.

Keywords

References

  1. J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, H. Balakrishna, "The pothole patrol: using a mobile sensor network for road surface monitoring," Proceeding of the 6th international conference on Mobile systems, applications, and services, pp. 29-39, 2008.
  2. K. T. Chang, J. R. Chang, and J. K. Liu, "Detection of pavement distresses using 3D laser scanning technology," Computing in Civil Engineering, pp. 1-11, 2005.
  3. C. Koch and I. Brilakis, "Pothole detection in asphalt pavement image," Advanced Engineering Informatics, vol. 25, no. 3, pp. 507-515, 2011. https://doi.org/10.1016/j.aei.2011.01.002
  4. R. S. Adhikari, O. Moselhi, and A. Bagchi, "Image-based retrieval of concrete crack properties," Journal of the International Society for Geotechnology, vol. 11, no. 2, pp. 315-321, 2012.
  5. G. W. Zack, W. E. Rogers, and S. A. Latt, "Automatic measurement of sister chromatid exchange frequency," J. Histochem. Cytochem. vol. 25, no. 7, pp. 741-753, 1977 https://doi.org/10.1177/25.7.70454
  6. N. Otsu, "A threshold selection method from gray-level histograms," IEEE Trans. Systems, Man, and Cybernetics, vol. SMC-9, no. 1, pp. 62-66, Jan. 1979.
  7. T. Leung and J. Malik, "Representing and recognizing the visual appearance of materials using three-dimensional textons, " Int. J. Comput. Vision, vol. 43, pp. 29-44, 2001 https://doi.org/10.1023/A:1011126920638
  8. C. Schmid, "Constructing models for content-based image retrieval," in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 39-45, 2001
  9. Young-Ro Kim and Sung-Soo Dong, "Noise Estimation Using Edge Detection," Journal of The Institute of Electronics Engineers of Korea, vol. 50, no. 5, pp. 281-286, 2013. https://doi.org/10.5573/ieek.2013.50.5.281
  10. Seung-Chan, Jeong-Moon Byun, and Gyeonghwan Kim, "A time recursive approach for do-interlacing using improved ELA and motion compensation based on hi-directional BMA," Journal of The Institute of Electronics Engineers of Korea, SP, vol. 41, no. 5, pp. 87-97, 2004.

Cited by

  1. 동영상 분석을 통한 실시간 포장 손상 탐지 및 알림 서비스 vol.24, pp.2, 2018, https://doi.org/10.5626/ktcp.2018.24.2.59