DOI QR코드

DOI QR Code

Non-Dyadic Lens Distortion Correction and Image Enhancement Based on Local Self-Similarity

자기 예제 참조기반 단계적 어안렌즈 영상보정을 통한 주변부 열화 제거

  • Park, Jinho (Dept. of Image Engineering, Graduate School of Advanced Image Science, Multimedia, and Film, Chung-Ang University) ;
  • Kim, Donggyun (Dept. of Image Engineering, Graduate School of Advanced Image Science, Multimedia, and Film, Chung-Ang University) ;
  • Kim, Daehee (Dept. of Image Engineering, Graduate School of Advanced Image Science, Multimedia, and Film, Chung-Ang University) ;
  • Kim, Chulhyun (Dep. of Media and Broadcast, Korea Nazarene University) ;
  • Paik, Joonki (Dept. of Image Engineering, Graduate School of Advanced Image Science, Multimedia, and Film, Chung-Ang University)
  • 박진호 (중앙대학교 첨단영상대학원 영상학과) ;
  • 김동균 (중앙대학교 첨단영상대학원 영상학과) ;
  • 김대희 (중앙대학교 첨단영상대학원 영상학과) ;
  • 김철현 (나사렛대학교 방송미디어학과) ;
  • 백준기 (중앙대학교 첨단영상대학원 영상학과)
  • Received : 2014.07.04
  • Accepted : 2014.09.30
  • Published : 2014.10.25

Abstract

In this paper, we present a non-dyadic lens distortion correction model and image restoration method based on local self-similarity to remove jagging and blurring artifacts in the peripheral region of the geometrically corrected image. The proposed method can be applied in various application areas including vehicle real-view cameras, visual surveillance systems, and medical imaging systems.

본 논문에서는 어안렌즈의 방사형 왜곡을 보정하면서 생기는 계단 현상과 흐려짐 현상을 제거하기 위해서 자기 예제 참조기반 단계적 어안 렌즈 영상의 기하학적 보정과 복원 방법을 제안한다. 제안하는 방법은 포물선 방정식을 적용해서 어안 렌즈 영상을 단계적으로 보정하고, 보정된 결과 영상에 자기 예제 참조 방법을 적용하여 계단 현상(jagging artifact)과 흐려짐 현상(blur artifact) 등의 부작용을 제거한다. 제안된 방법은 어안 렌즈 영상의 기하학적 보정과 주변부 열화 개선이 필요한 자동차의 전후방 카메라, 비디오 감시 시스템 등에 적용하여 손실율이 적은 영상 획득을 가능하게 한다.

Keywords

References

  1. C. Hughes, P. Denny, E. Jones and M. Glavin, "Accuracy of fish-eye lens models," Applied Optics, vol. 49, no. 17, pp. 3338-3347, 10 June 2010. https://doi.org/10.1364/AO.49.003338
  2. D. Brown, "Decentering Distortion of Lenses," Photometric Engineering, vol. 32, no. 3, pp. 444-462, 1996
  3. R. Tsai, "A Versatile Camera Calibration Technique for High-Accuracy 3-D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses," IEEE Journal of Robotics and Automation, vol. 3, no. 4, pp. 323-344, August 1987. https://doi.org/10.1109/JRA.1987.1087109
  4. Z. Zhang, "A Flexible New Technique for Camera Calibration," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp.1330-1334, November 2000. https://doi.org/10.1109/34.888718
  5. C. Hughes, R. McFeely, P. Denny, M. Glavin, and E. Jones, "Equidistant fish-eye perspective with application in distortion centre estimation," Image and Vision Computing, vol. 28, no. 3, pp. 538-551, March 2010. https://doi.org/10.1016/j.imavis.2009.09.001
  6. D. Kim, J. Park, and J. Paik, "Lens Distortion Correction and Enhancement Based on Local Self-similarity for High-quality Consumer Imaging Systems," IEEE Trans. Consumer Electronics, vol. 60, no. 1, pp. 18-22, February 2014. https://doi.org/10.1109/TCE.2014.6780920
  7. G. Freedman and R. Fattal, "Image and Video Upscaling from Local Self-examples," ACM Trans. Graphics, vol. 30, no. 2, pp. 12.1-12.11, April 2011.
  8. K. Miyamoto, "Fish Eye Lens," Journal of the Optical Society of America, vol. 54, Issue 8, pp. 1060-1061, 1964. https://doi.org/10.1364/JOSA.54.001060
  9. N. Kingsbury, "Complex Wavelets for Shift Invariant Analysis and Filtering of Signals," Applied and Computational Harmonic, vol. 10, no. 3, pp. 234-253, May 2001. https://doi.org/10.1006/acha.2000.0343