DOI QR코드

DOI QR Code

Pipeline-Aware QC-IRA-LDPC 부호 및 효율적인 복호기 구조

Pipeline-Aware QC-IRA-LDPC Code and Efficient Decoder Architecture

  • 사부흐 (인하대학교 정보통신공학과) ;
  • 이한호 (인하대학교 정보통신공학과)
  • Ajaz, Sabooh (Department of Information and Communication Engineering, Inha University) ;
  • Lee, Hanho (Department of Information and Communication Engineering, Inha University)
  • 투고 : 2014.05.16
  • 심사 : 2014.10.06
  • 발행 : 2014.10.25

초록

본 논문은 PIPELINE-AWARE QC-IRA-LDPC (PA-QC-IRA-LDPC) 코드 생성 방법과 Rate-1/2 (2016,1008) PA-QC-IRA-LDPC 코드에 대한 효율적인 고속 복호기 구조를 제안한다. 제안한 방법은 비트 오류율 (BER) 성능 저하 없이 파이프라인 기법을 사용하여 임계경로를 나눌 수 있다. 또한 제안한 복호기 구조는 데이터 처리량, 하드웨어 효율 및 에너지 효율을 크게 향상시킬 수 있다. 제안한 복호기 구조는 90-nm CMOS 기술을 사용하여 합성 및 레이아웃이 수행되었으며, 이전에 보고된 복호기 구조들에 비해서 하드웨어 효율성이 53%이상 향상되었고, 훨씬 좋은 에너지 효율성을 보여준다.

This paper presents a method for constructing a pipeline-aware quasi-cyclic irregular repeat accumulate low-density parity-check (PA-QC-IRA-LDPC) codes and efficient rate-1/2 (2016, 1008) PA-QC-IRA-LDPC decoder architecture. A novel pipeline scheduling method is proposed. The proposed methods efficiently reduce the critical path using pipeline without any bit error rate (BER) degradation. The proposed pipeline-aware LDPC decoder provides a significant improvement in terms of throughput, hardware efficiency, and energy efficiency. Synthesis and layout of the proposed architecture is performed using 90-nm CMOS standard cell technology. The proposed architecture shows more than 53% improvement of area efficiency and much better energy efficiency compared to the previously reported architectures.

키워드

참고문헌

  1. M. Mansour and N. Shanbhag, "High-throughput LDPC decoders," IEEE Trans. VLSI Systems, vol. 11, no. 6, pp. 976-996, Dec. 2003. https://doi.org/10.1109/TVLSI.2003.817545
  2. Z. Cui, Z. Wang, Y. Liu, "High-throughput layered LDPC decoding architecture," IEEE Trans. VLSI Systems, vol. 17, no. 4, pp. 582-587, Apr. 2009. https://doi.org/10.1109/TVLSI.2008.2005308
  3. J. Zhang, M Fossorier, "Shuffled Iterative Decoding", IEEE Trans. on Comm., vol. 53, no. 2, pp. 209-213, Feb. 2005. https://doi.org/10.1109/TCOMM.2004.841982
  4. D. Oh, K. Parhi, "Min-Sum decoder architecture with reduced word length for LDPC Codes", IEEE Trans. Circuits Syst. I, vol. 57, no. 1, pp. 105-115, Jan. 2010. https://doi.org/10.1109/TCSI.2009.2016171
  5. S. Kim, G. E. Sobelman, H. Lee "A Reduced-Complexity Architecture for LDPC Layered Decoding Schemes," IEEE Trans. on VLSI Systems, vol. 19, no. 6, pp. 1099-1103, Jun. 2011. https://doi.org/10.1109/TVLSI.2010.2043965
  6. L. Liu and C.-J. R. Shi, "Sliced message passing: High throughput over-lapped decoding of high-rate low-density parity-check codes," IEEE Trans. Circuits Syst. I, vol. 55, no. 11, pp. 3697-3710, Nov. 2008. https://doi.org/10.1109/TCSI.2008.926995
  7. H. Lee, S. Ajaz, "A High-Throughput QC-LDPC Decoder Architecture for Multi-Gigabit WPAN Systems," Journal of The Institute of Electronics Engineers of Korea Vol. 50, No. 2, pp. 105-113, Feb. 2013. https://doi.org/10.5573/ieek.2013.50.2.104
  8. L. Gianluigi, S. Song, L. Lan, Y. Zhang, S. Lin and W.E Ryan "Design of LDPC Codes: A Survey and New Results", J. of Communication Software and Systems, vol. 2, pp. 191-211, Sep. 2006.
  9. Y. Zhang, W.E. Ryan, "Structured IRA Codes: Performance Analysis and Construction", IEEE Trans. on Comm., vol. 55, no. 5, pp. 837-844, May 2007. https://doi.org/10.1109/TCOMM.2007.896139
  10. A. Darabiha,, A. C. Carusone,, F. R. Kschischang, "Block-Interlaced LDPC Decoders with Reduced Interconnect Complexity", IEEE Trans. Circuits Syst. II, Express Brief, vol.55, no. 1, pp. 74-78, Jan. 2008. https://doi.org/10.1109/TCSII.2007.905328
  11. C. Wey, M. Shieh, S. Lin, "Algorithms of Finding the First Two Minimum Values and Their Hardware Implementation", IEEE Trans. Circuits Syst. I, vol.55, no. 11, pp. 3430-3437, Dec. 2008. https://doi.org/10.1109/TCSI.2008.924892
  12. K. Zhang, X. Huang, Z. Wang, "High-throughput layered decoder implementation for quasi-cyclic LDPC codes", IEEE J. on Sel. Areas in Comm., vol. 27, no. 6, pp. 985-994, Aug. 2009. https://doi.org/10.1109/JSAC.2009.090816
  13. Y. Sun and J. R. Cavallaro, "A low power 1-Gbps reconfigurable LDPC decoder design for multiple 4G wireless standards," IEEE International SOC Conference, pp. 367-370, Sept. 2008.
  14. C. Roth, P. Meinerzhagen, C. Studer. and A. Burg, "A 15.8 pJ/bit/iter Quasi-Cyclic LDPC Decoder for IEEE 802.11n in 90 nm CMOS," IEEE Asian Solid State Circuits Conference, pp. 1-4, Nov. 2010.
  15. M. M. Mansour and N. R. Shanbhag, "A 640-Mb/s 2048-Bit Programmable LDPC Decoder Chip," IEEE Journal of Solid-State Circuits, vol. 41, pp. 684-698, Mar. 2006. https://doi.org/10.1109/JSSC.2005.864133
  16. J. R. Hauser, "Handbook of Semiconductor Manufacturing Technology," editor R. Doering and Y. Nishi, CRC Press, Bosa Roca, 2007, 2nd ed. 1-21.