DOI QR코드

DOI QR Code

Diffusion Coefficients of CdSe/CdS Quantum Rods in Water Measured Using Polarized Fluorescence Correlation Spectroscopy

  • Lee, Jaeran (Department of Physics, University of Ulsan) ;
  • Pack, Chan-Gi (Confocal Microscope Core Laboratory, Asan Institute for Life Sciences, Asan Medical Center) ;
  • Kim, Soo Yong (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Kim, Sok Won (Department of Physics, University of Ulsan)
  • 투고 : 2014.06.02
  • 심사 : 2014.09.19
  • 발행 : 2014.10.25

초록

A polarization fluorescence correlation spectroscopy system based on a confocal microscope was built to study the rotational and translational diffusion of CdSe/CdS quantum rods (Q-rods), with the same and different polarization states between the polarizer and the analyzer (i.e. the XXX and XYY states). The rotational diffusion amplitude showed the dependences on polarization of $0.75{\pm}0.05$ in the XXX state and $0.26{\pm}0.03$ in the XYY state, when the translational diffusion amplitude was 1. The diffusion coefficients of the Q-rods were found based on their translational and rotational diffusion times in the two polarization states, in solutions with viscosity ranging from 0.9 to 6.9 cP. The translational and rotational diffusion coefficients ranged from $1.5{\times}10^{-11}$ to $2.6{\times}10^{-12}m^2s^{-1}$ and from $2.9{\times}10^5$ to $5.6{\times}10^4s^{-1}$, respectively.

키워드

참고문헌

  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer Science+Business Media, 2006).
  2. D. Magde, E. Elson, and W. W. Webb, "Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972). https://doi.org/10.1103/PhysRevLett.29.705
  3. E. L. Elson and D. Magde, "Fluorescence correlation spectroscopy. I. Conceptual basis and theory," Biopolymers 13, 1-27 (1974). https://doi.org/10.1002/bip.1974.360130102
  4. D. Magde, E. Elson, and W. W. Webb, "Fluorescence correlation spectroscopy. II. An experimental realization," Biopolymers 13, 29-61 (1974). https://doi.org/10.1002/bip.1974.360130103
  5. R. Rigler, U. Mets, J. Widengen, and P. Kask, "Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion," Eur. Biophys. J. 22, 169-175 (1993).
  6. P. Brazda, T. Szekeres, B. Bravics, K. Toth, G. Vamosi, and L. Nagy, "Live-cell fluorescence correlation spectroscopy dissects the role of coregulator exchange and chromatin binding in retinoic acid receptor mobility," J. Cell Sci. 124, 3631-3642 (2011). https://doi.org/10.1242/jcs.086082
  7. C. Pack, K. Saito, M. Tamura, and M. Kinjo, "Microenvironment and effect of energy depletion in the nucleus analyzed by mobility of multiple oligomeric EGFPs," Biophys. J. 91, 3921 (2006). https://doi.org/10.1529/biophysj.105.079467
  8. J. A. J. Fitzpatrick and B. F. Lillemeier, "Fluorescence correlation spectroscopy: Linking moleculear dynamics to biological function in vitro and situ," Current Opinion in Structural Biology 21, 1-11 (2011). https://doi.org/10.1016/j.sbi.2010.12.003
  9. A. P. Alivisatos, "Semiconductor clusters, nanocrystals, and quantum dots," Science 271, 933-937 (1996). https://doi.org/10.1126/science.271.5251.933
  10. X. Michalet, F. F. Finaud, L. A. Bentolia, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wi, S. S. Gambhir, and S. Weiss, "Quantum dot for live cells, in vivo imaging, and diagnostics," Science 307, 538-544 (2005). https://doi.org/10.1126/science.1104274
  11. M. Ehrenberg and R. Rigler, "Rotational Brownian motion and fluorescence intensity fluctuations," Chem. Phys. 4, 390-401 (1974). https://doi.org/10.1016/0301-0104(74)85005-6
  12. U. Mets, Fluorescence Correlation Sepctroscopy (Springer, 2001).
  13. H. S. Shin, A. Okamoto, Y. Sako, S. Y. Kim, S. W. Kim, and C. G. Pack, "Characterization of the triplet state of hybridization-sensitive DNA probe by using fluorescence correlation spectroscopy," J. Phys. Chem. A 117, 27-33 (2013). https://doi.org/10.1021/jp307018k
  14. P. Kask, P. Piksarv, M. Pooga, U. Mets, and E. Lippmaa, "Separation of the rotational contribution in fluorescence correlation experiments," Biophys. J. 55, 213-220 (1989). https://doi.org/10.1016/S0006-3495(89)82796-1
  15. M. Ehrenberg and R. Rigler, "Fluorescence correlation spectroscopy applied to rotational diffusion of macromolecules," Q. Rev. Biophys. 9, 69-81 (1976). https://doi.org/10.1017/S003358350000216X
  16. M. Zhao, L. Jin, B. Chen, Y. Ding, H. Ma, and D. Chen, "Afterpulsing and its correction in fluorescence correlation spectroscopy experiments," Appl. Opt. 42, 4031-4036 (2003). https://doi.org/10.1364/AO.42.004031
  17. S. Deka, A. Quarta, M. G. Lupo, A. Falqui, S. Boninelli, C. Giannini, G. Morello, M. D. Giorgi, G. Lanzni, C. Spinella, R. Cinglani, T. Pellegrino, and L. Manna, "CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes," J. Am. Chem. Soc. 131, 2948-2958 (2009). https://doi.org/10.1021/ja808369e
  18. N. S. Cheng, "Formula for the viscosity of glycerol-water mixture," Ind. Eng. Chem. Res. 47, 3285-3288 (2008). https://doi.org/10.1021/ie071349z
  19. M. Dorfschmid, K. Mullen, A. Zumbusch, and D. Woll, "Translational and rotational diffusion during radical bulk polymerization: A comparative investigation by full correlation fluorescence correlation spectroscopy (fcFCS)," Macromolecules 43, 6174-6179 (2010). https://doi.org/10.1021/ma100888s
  20. M. Muller, Indroduction to Confocal Fluorescence Microscopy, 2nd ed. (SPIE Press, Washington, USA, 2006).
  21. D. S. Banks and C. Fradin, "Anomalous diffusion of proteins due to molecular crowding," Biophys. J. 89, 2060-2971 (2005).
  22. J. M. Tsay, S. Doose, and S. Weiss, "Rotational and translational diffusion of peptide-coated CdSe/CdS/ZnS nanorods studied by fluorescence correlation spectroscopy," J. Am. Chem. Soc. 128, 1639-1647 (2006). https://doi.org/10.1021/ja056162i
  23. E. Hecht, Optics, 2nd ed. (Addison Wesley Publishing Company Inc., New York, USA, 1987).
  24. A. Cooper, Biophysical Chemistry (Life Science Publishing Co., Cambridge, 2005).
  25. C. Pack, H. Yukii, A. Toh-e, T. Kudo, H. Tsuchiya, A. Kaiho, E. Sakata, S. Murata, H. Yokosawa, Y. Sako, W. Baumeister, K. Tanaka, and Y. Saeki, "Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome," Nat. Commun. 5, 1-10 (2014).

피인용 문헌

  1. Analysis of the Fluorescence Correlation Function of Quantum Rods with Different Lengths vol.25, pp.6, 2015, https://doi.org/10.1007/s10895-015-1671-5
  2. Identification and Determination of Oil Pollutants Based on 3-D Fluorescence Spectrum Combined with Self-weighted Alternating Trilinear Decomposition Algorithm vol.20, pp.1, 2016, https://doi.org/10.3807/JOSK.2016.20.1.204
  3. Calibration of Measurement of Multiple Polarization Singularities vol.19, pp.4, 2015, https://doi.org/10.3807/JOSK.2015.19.4.397