DOI QR코드

DOI QR Code

Two-Dimensional Correlation Analysis of Sum-Frequency Vibrational Spectra of Langmuir Monolayers

  • 투고 : 2014.06.10
  • 심사 : 2014.08.19
  • 발행 : 2014.10.25

초록

Sum-frequency generation spectra of a Langmuir monolayer on water surface at varying surface areas were studied with two-dimensional correlation analysis. Upon enlarging the area/molecule of the Langmuir monolayer, the sum-frequency spectra changed reflecting the conformation change of the alkyl chains of the molecules in the monolayer. These changes stood out more clearly by employing two-dimensional correlation analysis of the above sum-frequency spectra. Features not very pronounced in the original spectra such as closely-spaced spectral bands can also be easily distinguished in the two-dimensional correlation spectra.

키워드

참고문헌

  1. H. Brockman, "Lipid monolayers: Why use half a membrane to characterize protein-membrane interactions?," Curr. Opin. Struct. Biol. 9, 438-443 (1999). https://doi.org/10.1016/S0959-440X(99)80061-X
  2. M. Montal and P. Mueller, "Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties," Proc. Natl. Acad. Sci. USA 69, 3561-3566 (1972). https://doi.org/10.1073/pnas.69.12.3561
  3. F. Giess, M. G. Friedrich, J. Heberle, R. L. Naumann, and W. Knoll, "The protein-tethered lipid bilayer: A novel mimic of the biological membrane," Biophys. J. 87, 3213-3220 (2004). https://doi.org/10.1529/biophysj.104.046169
  4. M. Tanaka and E. Sackmann, "Polymer-supported membranes as models of the cell surface," Nature 437, 656-663 (2005). https://doi.org/10.1038/nature04164
  5. M. Shih, T. Bohanon, J. Mikrut, P. Zschack, and P. Dutta, "X-ray-diffraction study of the superliquid region of the phase diagram of a Langmuir monolayer," Phys. Rev. A 45, 5734-5737 (1992). https://doi.org/10.1103/PhysRevA.45.5734
  6. S. R. Wasserman, G. M. Whitesides, I. M. Tidswell, B. M. Ocko, P. S. Pershan, and J. D. Axe, "The structure of self-assembled monolayers of Alkylsiloxanes on silicon: A comparison of results from ellipsometry and low-angle x-ray reflectivity," J. Am. Chem. Soc. 111, 5852-5861 (1989). https://doi.org/10.1021/ja00197a054
  7. E. Loste, E. D.-Marti, A. Zarbakhsh, and F. C. Meldrum, "Study of calcium carbonate precipitation under a series of fatty acid Langmuir monolayers using brewster angle microscopy," Langmuir 19, 2830-2837 (2003). https://doi.org/10.1021/la026837k
  8. Q. Huo, S. Russev, T. Hasegawa, J. Nishijo, J. Umemura, G. Puccetti, K. C. Russell, and R. M. Leblanc, "A Langmuir monolayer with a nontraditional molecular architecture," J. Am. Chem. Soc. 122, 7890-7897 (2000). https://doi.org/10.1021/ja984158j
  9. J. Gun, R. Iscovici, and J. Sagiv, "On the formation and structure of self-assembling monolayers: II. A comparative study of Langmuir-Blodgett and adsorbed films using ellipsometry and IR reflection-absorption spectroscopy," J. Colloid Interface Sci. 101, 201-213 (1984). https://doi.org/10.1016/0021-9797(84)90020-1
  10. P. G.-Sionnest, J. H. Hunt, and Y. R. Shen, "Sum-frequency vibrational spectroscopy of a Langmuir film: Study of molecular orientation of a two-dimensional system," Phys. Rev. Lett. 59, 1597-1600 (1987). https://doi.org/10.1103/PhysRevLett.59.1597
  11. S. Seok, T. J. Kim, S. Y. Hwang, Y. D. Kim, D. Vaknin, and D. Kim, "Imaging of collapsed fatty acid films at air-water interfaces," Langmuir 25, 9262-9269 (2009). https://doi.org/10.1021/la900096a
  12. W. Sung, D. Kim, and Y. R. Shen, "Sum-frequency vibrational spectroscopic studies of Langmuir monolayers," Curr. Appl. Phys. 13, 619-632 (2013). https://doi.org/10.1016/j.cap.2012.12.002
  13. W. Sung, D. Vaknin, and D. Kim, "Different adsorption behavior of rare earth and metallic ion complexes on Langmuir monolayers probed by sum-frequency generation spectroscopy," J. Opt. Soc. Korea 17, 10-15 (2013). https://doi.org/10.3807/JOSK.2013.17.1.010
  14. X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, "Mapping molecular orientation and conformation at interfaces by surface nonlinear optics," Phys. Rev. B 59, 12632-12640 (1999). https://doi.org/10.1103/PhysRevB.59.12632
  15. I. Noda, "Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy," Appl. Spectrosc. 47, 1329-1336 (1993). https://doi.org/10.1366/0003702934067694
  16. I. Noda, "Two-dimensional infrared spectroscopy," J. Am. Chem. Soc. 111, 8116-8118 (1989). https://doi.org/10.1021/ja00203a008
  17. I. Noda, "Determination of two-dimensional correlation spectra using the Hilbert transform," Appl. Spectrosc. 54, 994-999 (2000). https://doi.org/10.1366/0003702001950472
  18. M. Kacurakova, A. C. Smith, M. J. Gidley, and R. H. Wilson, "Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy," Carbohydr. Res. 337, 1145-1153 (2002). https://doi.org/10.1016/S0008-6215(02)00102-7
  19. Q.-X. Ruan and P. Zhou, "Sodium ion effect on silk fibroin conformation characterized by solid-state NMR and generalized 2D NMR-NMR correlation," J. Mol. Sturct. 883-884, 85-90 (2008). https://doi.org/10.1016/j.molstruc.2007.11.055
  20. V. A. Shasilov and I. K. Lednev, "2D correlation deep UV resonance raman spectroscopy of early events of lysozyme fibrillation: Kinetic mechanism and potential interpretation pitfalls," J. Am. Chem. Soc. 130, 309-317 (2008). https://doi.org/10.1021/ja076225s
  21. I. Noda, Y. Liu, and Y. Ozaki, "Two-dimensional correlation spectroscopy study of temperature-dependent spectral variations of N-Methylacetamide in the pure liquid state. 2. Two-dimensional Raman and infrared-Raman heterospectral analysis," J. Phys. Chem. 100, 8674-8680 (1996). https://doi.org/10.1021/jp9534141
  22. Y. M. Jung, B. C.-Matusewicz, and Y. Ozaki, "Two-dimensional infrared, two-dimensional Raman, and two-dimensional infrared and Raman heterospectral correlation studies of secondary structure of a-Lactoglobulin in buffer solutions," J. Phys. Chem. B 104, 7812-7817 (2000). https://doi.org/10.1021/jp0008041
  23. Y. M. Jung, H. S. Shin, B. C. Matusewicz, I. Noda, and S. B. Kim, "Characterization of transition temperatures of a Langmuir-Blodgett film of Poly(tert-butyl methacrylate) by two-dimensional correlation spectroscopy and principal component analysis," Appl. Spectrosc. 56, 1568-1574 (2002). https://doi.org/10.1366/000370202321116039
  24. H. C. Choi, Y. M. Jung, I. Noda, and S. B. Kim, "A study of the mechanism of the electrochemical reaction of lithium with CoO by two-dimensional soft x-ray absorption spectroscopy (2D XAS), 2D Raman, and 2D heterospectral XAS-Raman correlation analysis," J. Phys. Chem. B 107, 5806-5811 (2003). https://doi.org/10.1021/jp030438w
  25. S. Roy, J. S. Post, K.-K. Hung, U. Stege, and D. K. Hore, "2D correlation analysis in vibrational sum-frequency generation spectroscopy," J. Mol. Struct. 1069, 103-111 (2014). https://doi.org/10.1016/j.molstruc.2013.10.074
  26. W. Sung, S. Seok, D. Kim, C. Tian, and Y. R. Shen, "Sum-frequency spectroscopic study of Langmuir monolayers of lipids having oppositely charged headgroups," Langmuir 26, 18266-18272 (2010). https://doi.org/10.1021/la103129z
  27. I. Noda and Y. Ozaki, Two-Dimensional Correlation Spectroscopy-Applications in Vibrational and Optical Spectroscopy (John Wiley & Sons, Chichester, UK, 2004).
  28. D. L. Elmore and R. A. Dluhy, "Application of 2D IR correlation analysis to phase transitions in Langmuir monolayer films," Colloids Surf. A 171, 225-239 (2000). https://doi.org/10.1016/S0927-7757(99)00542-7
  29. I. V. Stiopkin, H. D. Jayathilake, A. N. Bordenyuk, and A. V. Benderskii, "Heterodyne-detected vibrational sum frequency generation spectroscopy," J. Am. Chem. Soc. 130, 2271-2275 (2008). https://doi.org/10.1021/ja076708w