References
- S. Westland and C. Ripamonti, Computational Color Science Using Matlab (Wiley, New York, USA, 2004).
- H. S. Fairman and M. H. Brill, "The principal components of reflectance," Color Res. Appl. 29, 104-110 (2004). https://doi.org/10.1002/col.10230
- S. Zuffi, S. Santini, and R. Schettini, "From color sensor space to feasible reflectance spectra," IEEE Trans. Signal Process. 56, 518-531 (2008). https://doi.org/10.1109/TSP.2007.907838
- S. Bianco, "Reflectance spectra recovery from tristimulus values by adaptive estimation with metameric shape correction," J. Opt. Soc. Am. A 27, 1868-1877 (2010). https://doi.org/10.1364/JOSAA.27.001868
- V. Babaei, S. H. Amirshahi, and F. Agahian, "Using weighted pseudo-inverse method for reconstruction of reflectance spectra and analyzing the dataset in terms of normality," Color Res. Appl. 36, 295-305 (2011). https://doi.org/10.1002/col.20613
- S. G. Kandi and M. A. Tehran, "Applying metamer sets to investigate data dependency of principal component analysis method in recovery of spectral data," Color Res. Appl. 36, 349-354 (2011). https://doi.org/10.1002/col.20645
- B. G. Kim, J. W. Han, and S. B. Park, "Spectral reflectivity recovery from the tristimulus values using a Hybrid method," J. Opt. Soc. Am. A 29, 2612-2621 (2012). https://doi.org/10.1364/JOSAA.29.002612
- R. S. Berns, Billmeyer and Saltzman's Principles of Color Technology, 3rd ed. (Wiley, New York, USA, 2000).
- J. Schanda, Colorimetry: Understanding the CIE System, 1st ed. (Wiley, New York, USA, 2007).
- N. Ohta and A. Robertson, Colorimetry: Fundamentals and Applications, 1st ed. (Wiley, New York, USA, 2006).
- W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University Press, New York, USA, 2007).
- W. L. Martinez, A. R. Martinez, and J. L. Solka, Exploratory Data Analysis with Matlab, 2nd ed. (Chapman & Hall, Boca Raton, FL, USA, 2011).
- E. B. Magrab, S. Azarm, B. Balachandran, J. H. Duncan, K. E. Herold, and G. C. Walsh, An Engineer's Guide to Matlab, 3rd ed. (Pearson, Upper Saddle River, NJ, USA, 2011).
- F. Agahian, S. A. Amirshahi, and S. H. Amirshahi, "Reconstruction of reflectance spectra using weighted principal component analysis," Color Res. Appl. 33, 360-371 (2008). https://doi.org/10.1002/col.20431
- T. Harifi, S. H. Amirshahi, and F. Agahian, "Recovery of reflectance spectra from colorimetric data using principal component analysis embedded regression technique," Opt. Rev. 15, 302-308 (2008). https://doi.org/10.1007/s10043-008-0049-1
- S. Farajikhah, F. Madanchi, and S. H. Amirshahi, "Nonlinear principal component analysis for compression of spectral data," in Proc. Conference on Data Mining and Data warehouses (Ljubljana, Slovenia, 2011), http://ailab.ijs.si/dunja/SiKDD2011/Papers/Farajikhah_PCA.pdf.
- S. H. Amirshahi and S. A. Amirhahi, "Adaptive non-negative bases for reconstruction of spectral data from colorimetric information," Opt. Review 17, 562-569 (2010). https://doi.org/10.1007/s10043-010-0101-9
- J. Kasson, W. Plouffe, and S. Nin, "A tetrahedral interpolation technique for color space conversion," Proc. SPIE 1909, 127-138 (1993).
- I. Amidror, "Scattered data interpolation methods for electronic imaging systems: A survey," J. Electron. Imaging 11, 157-176 (2002). https://doi.org/10.1117/1.1455013
- F. M. Abed, S. H. Amirshahi, and M. R. M. Abed, "Reconstruction of reflectance data using an interpolation technique," J. Opt. Soc. Am. A 26, 613-624 (2009). https://doi.org/10.1364/JOSAA.26.000613
- D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature 401, 788-791 (1999). https://doi.org/10.1038/44565
- D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization," in Proc. Neural Information Processing Systems (MIT Press, Cambridge, MA, USA, 2000), pp. 556-562.
- J. Kim and H. Park, "Fast nonnegative matrix factorization: An active-set-like method and comparisons," SIAM J. of Sci. Comput. (SISC) 33, 3261-3281 (2011). https://doi.org/10.1137/110821172
- M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications, 3rd ed. (Springer, Berlin, Germany, 2010).
- Q. Wu, H. Xu, and X. Zou, "An effective method for 3D geological modeling with multi source data integration," Computers and Geosciences 31, 35-43 (2005). https://doi.org/10.1016/j.cageo.2004.09.005
- H. Hiyoshi, "Stable computation of natural neighbor interpolation," Int. J. Comput. Geom. Appl. 18, 321 (2008). https://doi.org/10.1142/S0218195908002659
- T. Bobach, G. Farin, D. Hansford, and G. Umlauf, "Natural neighbor extrapolation using ghost points," Computer-Aided Design 41, 350-365 (2009). https://doi.org/10.1016/j.cad.2008.08.007
- University of Joensuu Color Group, "Spectral database," http://www.uef.fi/fi/spectral/spectral-database.
- We have used MATLAB function of gfit2.m, which can be downloaded from http://www.mathworks.com/matlabcentral/fileexchange/22020-goodness-of-fit--modified-/content/gfit2.m.
- J. Wagberg, "OptProp, Matlab toolbox for calculation of color related optical properties," http://apachepersonal.miun.se/-magneu/publications/R-07-77.pdf (2007).
- B. G. Kim, J.-W. Han, and S.-B. Park, "Computer simulation for gradual yellowing of aged lens and its application for test devices," J. Opt. Soc. Korea 17, 344-349 (2013). https://doi.org/10.3807/JOSK.2013.17.4.344
- We have used MATLAB function of nearestneighbor.m, which can be downloaded from http://www.mathworks.com/matlabcentral/fileexchange/12574-nearestneighbour-m.
Cited by
- Study on the key technology of spectral reflectance reconstruction based on a single pixel detector vol.14, pp.12, 2017, https://doi.org/10.1088/1612-202X/aa8cde