DOI QR코드

DOI QR Code

Spectral Reflectivity Recovery from Tristimulus Values Using 3D Extrapolation with 3D Interpolation

  • Kim, Bog G. (Department of Physics, Pusan National University) ;
  • Werner, John S. (Department of Ophthalmology and Vision Science, University of California) ;
  • Siminovitch, Michael (Design Department, California Lighting Technology Center, University of California) ;
  • Papamichael, Kostantinos (Design Department, California Lighting Technology Center, University of California) ;
  • Han, Jeongwon (Department of Housing and Interior design, Pusan National University) ;
  • Park, Soobeen (Department of Ophthalmology and Vision Science, University of California)
  • Received : 2014.06.05
  • Accepted : 2014.09.05
  • Published : 2014.10.25

Abstract

We present a hybrid method for spectral reflectivity recovery, using 3D extrapolation as a supplemental method for 3D interpolation. The proposed 3D extrapolation is an extended version of 3D interpolation based on the barycentric algorithm. It is faster and more accurate than the conventional spectral-recovery techniques of principal-component analysis and nonnegative matrix transformation. Four different extrapolation techniques (based on nearest neighbors, circumcenters, in-centers, and centroids) are formulated and applied to recover spectral reflectivity. Under the standard conditions of a D65 illuminant and 1964 $10^{\circ}$ observer, all reflectivity data from 1269 Munsell color chips are successfully reconstructed. The superiority of the proposed method is demonstrated using statistical data to compare coefficients of correlation and determination. The proposed hybrid method can be applied for fast and accurate spectral reflectivity recovery in image processing.

Keywords

References

  1. S. Westland and C. Ripamonti, Computational Color Science Using Matlab (Wiley, New York, USA, 2004).
  2. H. S. Fairman and M. H. Brill, "The principal components of reflectance," Color Res. Appl. 29, 104-110 (2004). https://doi.org/10.1002/col.10230
  3. S. Zuffi, S. Santini, and R. Schettini, "From color sensor space to feasible reflectance spectra," IEEE Trans. Signal Process. 56, 518-531 (2008). https://doi.org/10.1109/TSP.2007.907838
  4. S. Bianco, "Reflectance spectra recovery from tristimulus values by adaptive estimation with metameric shape correction," J. Opt. Soc. Am. A 27, 1868-1877 (2010). https://doi.org/10.1364/JOSAA.27.001868
  5. V. Babaei, S. H. Amirshahi, and F. Agahian, "Using weighted pseudo-inverse method for reconstruction of reflectance spectra and analyzing the dataset in terms of normality," Color Res. Appl. 36, 295-305 (2011). https://doi.org/10.1002/col.20613
  6. S. G. Kandi and M. A. Tehran, "Applying metamer sets to investigate data dependency of principal component analysis method in recovery of spectral data," Color Res. Appl. 36, 349-354 (2011). https://doi.org/10.1002/col.20645
  7. B. G. Kim, J. W. Han, and S. B. Park, "Spectral reflectivity recovery from the tristimulus values using a Hybrid method," J. Opt. Soc. Am. A 29, 2612-2621 (2012). https://doi.org/10.1364/JOSAA.29.002612
  8. R. S. Berns, Billmeyer and Saltzman's Principles of Color Technology, 3rd ed. (Wiley, New York, USA, 2000).
  9. J. Schanda, Colorimetry: Understanding the CIE System, 1st ed. (Wiley, New York, USA, 2007).
  10. N. Ohta and A. Robertson, Colorimetry: Fundamentals and Applications, 1st ed. (Wiley, New York, USA, 2006).
  11. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University Press, New York, USA, 2007).
  12. W. L. Martinez, A. R. Martinez, and J. L. Solka, Exploratory Data Analysis with Matlab, 2nd ed. (Chapman & Hall, Boca Raton, FL, USA, 2011).
  13. E. B. Magrab, S. Azarm, B. Balachandran, J. H. Duncan, K. E. Herold, and G. C. Walsh, An Engineer's Guide to Matlab, 3rd ed. (Pearson, Upper Saddle River, NJ, USA, 2011).
  14. F. Agahian, S. A. Amirshahi, and S. H. Amirshahi, "Reconstruction of reflectance spectra using weighted principal component analysis," Color Res. Appl. 33, 360-371 (2008). https://doi.org/10.1002/col.20431
  15. T. Harifi, S. H. Amirshahi, and F. Agahian, "Recovery of reflectance spectra from colorimetric data using principal component analysis embedded regression technique," Opt. Rev. 15, 302-308 (2008). https://doi.org/10.1007/s10043-008-0049-1
  16. S. Farajikhah, F. Madanchi, and S. H. Amirshahi, "Nonlinear principal component analysis for compression of spectral data," in Proc. Conference on Data Mining and Data warehouses (Ljubljana, Slovenia, 2011), http://ailab.ijs.si/dunja/SiKDD2011/Papers/Farajikhah_PCA.pdf.
  17. S. H. Amirshahi and S. A. Amirhahi, "Adaptive non-negative bases for reconstruction of spectral data from colorimetric information," Opt. Review 17, 562-569 (2010). https://doi.org/10.1007/s10043-010-0101-9
  18. J. Kasson, W. Plouffe, and S. Nin, "A tetrahedral interpolation technique for color space conversion," Proc. SPIE 1909, 127-138 (1993).
  19. I. Amidror, "Scattered data interpolation methods for electronic imaging systems: A survey," J. Electron. Imaging 11, 157-176 (2002). https://doi.org/10.1117/1.1455013
  20. F. M. Abed, S. H. Amirshahi, and M. R. M. Abed, "Reconstruction of reflectance data using an interpolation technique," J. Opt. Soc. Am. A 26, 613-624 (2009). https://doi.org/10.1364/JOSAA.26.000613
  21. D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature 401, 788-791 (1999). https://doi.org/10.1038/44565
  22. D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization," in Proc. Neural Information Processing Systems (MIT Press, Cambridge, MA, USA, 2000), pp. 556-562.
  23. J. Kim and H. Park, "Fast nonnegative matrix factorization: An active-set-like method and comparisons," SIAM J. of Sci. Comput. (SISC) 33, 3261-3281 (2011). https://doi.org/10.1137/110821172
  24. M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications, 3rd ed. (Springer, Berlin, Germany, 2010).
  25. Q. Wu, H. Xu, and X. Zou, "An effective method for 3D geological modeling with multi source data integration," Computers and Geosciences 31, 35-43 (2005). https://doi.org/10.1016/j.cageo.2004.09.005
  26. H. Hiyoshi, "Stable computation of natural neighbor interpolation," Int. J. Comput. Geom. Appl. 18, 321 (2008). https://doi.org/10.1142/S0218195908002659
  27. T. Bobach, G. Farin, D. Hansford, and G. Umlauf, "Natural neighbor extrapolation using ghost points," Computer-Aided Design 41, 350-365 (2009). https://doi.org/10.1016/j.cad.2008.08.007
  28. University of Joensuu Color Group, "Spectral database," http://www.uef.fi/fi/spectral/spectral-database.
  29. We have used MATLAB function of gfit2.m, which can be downloaded from http://www.mathworks.com/matlabcentral/fileexchange/22020-goodness-of-fit--modified-/content/gfit2.m.
  30. J. Wagberg, "OptProp, Matlab toolbox for calculation of color related optical properties," http://apachepersonal.miun.se/-magneu/publications/R-07-77.pdf (2007).
  31. B. G. Kim, J.-W. Han, and S.-B. Park, "Computer simulation for gradual yellowing of aged lens and its application for test devices," J. Opt. Soc. Korea 17, 344-349 (2013). https://doi.org/10.3807/JOSK.2013.17.4.344
  32. We have used MATLAB function of nearestneighbor.m, which can be downloaded from http://www.mathworks.com/matlabcentral/fileexchange/12574-nearestneighbour-m.

Cited by

  1. Study on the key technology of spectral reflectance reconstruction based on a single pixel detector vol.14, pp.12, 2017, https://doi.org/10.1088/1612-202X/aa8cde