DOI QR코드

DOI QR Code

Ultra Broadband Absorption of SPPs Enhanced Dual Grating Thin Film CIGS Solar Cell Enabled by Particle Swarm Optimization

  • Le, DuyKhanh (Department of Department of Electrical and Computer Engineering, Ajou University) ;
  • Tran, QuyetThang (Department of Department of Electrical and Computer Engineering, Ajou University) ;
  • Lee, Sangjun (Department of Department of Electrical and Computer Engineering, Ajou University) ;
  • Kim, Sangin (Department of Department of Electrical and Computer Engineering, Ajou University)
  • 투고 : 2014.05.02
  • 심사 : 2014.08.07
  • 발행 : 2014.10.25

초록

We examined the effective utilization of Particle Swarm Optimization (PSO) to enhance the light absorption performance in thin CuIn1-xGaxSe2 (CIGS) solar cells with dual (top and bottom) gratings. The PSO tuned structure was demonstrated to be capable of achieving high and ultra broadband absorption spectra due to well-spaced and well-defined absorption peaks, which were SPPs and photonic modes induced by the metal and dielectric gratings. For only TM polarization and both polarizations, the fully optimized net absorptions exhibit 85.6% and 78.1%, which correspond to ~35.4% and ~23.5% improvement compared to optimized flat structures, respectively.

키워드

참고문헌

  1. H. W. Schock and R. Noufi, "CIGS-based solar cells for the next millennium," Prog. Photovolt: Res. Appl. 8, 151-160 (2000). https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<151::AID-PIP302>3.0.CO;2-Q
  2. A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F.-J. Haug, M. Kalin, D. Rudmann, and A. N. Tiwari, "Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells," Prog. Photovol: Res. Appl. 12, 93-111 (2004). https://doi.org/10.1002/pip.527
  3. A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, "Highly efficient $Cu(In,Ga)Se_2$ solar cells grown on flexible polymer films," Nat. Mater. 10, 857-861 (2011). https://doi.org/10.1038/nmat3122
  4. T. Nakada, "CIGS-based thin film solar cells and modules: Unique material properties," Electron. Mater. Lett. 8, 179-185 (2012). https://doi.org/10.1007/s13391-012-2034-x
  5. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Manner, W. Wischmann, and M. Powalla, "New world record efficiency for $Cu(In,Ga)Se_2$ thin-film solar cells beyond 20%," Prog. Photovolt: Res. Appl. 19, 894-897 (2011). https://doi.org/10.1002/pip.1078
  6. M. I. Alonso, M. Garriga, C. A. Durante Rincon, E. Hernandez, and M. Leon, "Optical functions of chalcopyrite $CuGa_xIn_{1-x}Se_2$ alloys," Appl. Phys. A 74, 659-664 (2002). https://doi.org/10.1007/s003390100931
  7. P. D. Paulson, R. W. Birkmire, and W. N. Shafarman, "Optical characterization of $CuIn_{1-x}Ga_xSe_2$ alloy thin films by spectroscopic ellipsometry," J. Appl. Phys. 94, 879-888 (2003). https://doi.org/10.1063/1.1581345
  8. S. Pillai and M. A. Green, "Plasmonics for photovoltaic applications," Sol. Energy Mater. Sol. Cells 94, 1481-1486 (2010). https://doi.org/10.1016/j.solmat.2010.02.046
  9. N. C. Panoiu and R. M. Osgood Jr, "Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes," Opt. Lett. 32, 2825-2827 (2007). https://doi.org/10.1364/OL.32.002825
  10. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, "Design of plasmonic thin-film solar cells with broadband absorption enhancements," Adv. Mater. 21, 3504-3509 (2009). https://doi.org/10.1002/adma.200900331
  11. H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices," Nat. Mater. 9, 205-213 (2010). https://doi.org/10.1038/nmat2629
  12. W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, "Broadband light absorption enhancement in thin-film silicon solar cells," Nano Lett. 10, 2012-2018 (2010). https://doi.org/10.1021/nl904057p
  13. R. Chriki, A. Yanai, J. Shappir, and U. Levy, "Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure," Opt. Express 21, A382-A391 (2013). https://doi.org/10.1364/OE.21.00A382
  14. C. S. Schuster, P. Kowalczewski, E. R. Martins, M. Patrini, M. G. Scullion, M. Liscidini, L. Lewis, C. Reardon, L. C. Andreani, and T. F. Krauss, "Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique," Opt. Express 21, A433-A438 (2013). https://doi.org/10.1364/OE.21.00A433
  15. A. Abass, K. Q. Le, A. Alu, M. Burgelman, and B. Maes, "Dual-interface gratings for broadband absorption enhancement in thin-film solar cells," Phys. Rev. B 85, 115449 (2012). https://doi.org/10.1103/PhysRevB.85.115449
  16. V. E. Ferry, A. Polman, and H. A. Atwater, "Modeling light trapping in nanostructured solar cells," ACS Nano 5, 10055-10064 (2011). https://doi.org/10.1021/nn203906t
  17. R. Eberhart and J. Kennedy, "Particle swarm optimization," Proc. IEEE International Conf. on Neural Networks 4, 1942-1948 (1995).
  18. M. S. Saremi and R. Magnusson, "Particle swarm optimization and its application to the design of diffraction grating filters," Opt. Lett. 32, 894-896 (2007). https://doi.org/10.1364/OL.32.000894
  19. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, "Thin film silicon solar cell design based on photonic crystal and diffractive grating structures," Opt. Express 16, 15238-15248 (2008). https://doi.org/10.1364/OE.16.015238
  20. R. Magnusson, M. S. Saremi, and E. G. Johnson, "Guided-mode resonant wave plates," Opt. Lett. 35, 2472-2474 (2010). https://doi.org/10.1364/OL.35.002472
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  22. R. Chriki, "Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure," Thesis at Hebrew University of Jerusalem, School of Engineering and Computer Sciences, Department of Applied Physics.
  23. S. Roy and P. C. Subramaniam, "TE-polarized surface plasmon polaritons in metal waveguides bounded by selffocusing and self-defocusing media," Opt. Lett. 17, 911-913 (1992). https://doi.org/10.1364/OL.17.000911
  24. Z. Yu, A. Raman, and S. Fan, "Fundamental limit of light trapping in grating structures," Opt. Express 18, A366-A380 (2010). https://doi.org/10.1364/OE.18.00A366
  25. C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, "Electron beam lithography: resolution limits and applications," Appl. Surf. Science 164, 111-117 (2000). https://doi.org/10.1016/S0169-4332(00)00352-4

피인용 문헌

  1. Review on light management by nanostructures in chalcopyrite solar cells vol.32, pp.4, 2017, https://doi.org/10.1088/1361-6641/aa59ee