DOI QR코드

DOI QR Code

Transcriptome profiling and comparative analysis of Panax ginseng adventitious roots

  • Jayakodi, Murukarthick (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Sang-Choon (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Park, Hyun-Seung (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Jang, Woojong (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Yun Sun (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Beom-Soon (Phyzen Genomics Institute) ;
  • Nah, Gyoung Ju (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Do-Soon (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Natesan, Senthil (Genomics and Proteomics Laboratory, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University) ;
  • Sun, Chao (Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Yang, Tae-Jin (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • Received : 2014.03.21
  • Accepted : 2014.05.22
  • Published : 2014.10.15

Abstract

Background: Panax ginseng Meyer is a traditional medicinal plant famous for its strong therapeutic effects and serves as an important herbal medicine. To understand and manipulate genes involved in secondary metabolic pathways including ginsenosides, transcriptome profiling of P. ginseng is essential. Methods: RNA-seq analysis of adventitious roots of two P. ginseng cultivars, Chunpoong (CP) and Cheongsun (CS), was performed using the Illumina HiSeq platform. After transcripts were assembled, expression profiling was performed. Results: Assemblies were generated from ~85 million and ~77 million high-quality reads from CP and CS cultivars, respectively. A total of 35,527 and 27,716 transcripts were obtained from the CP and CS assemblies, respectively. Annotation of the transcriptomes showed that approximately 90% of the transcripts had significant matches in public databases.We identified several candidate genes involved in ginsenoside biosynthesis. In addition, a large number of transcripts (17%) with different gene ontology designations were uniquely detected in adventitious roots compared to normal ginseng roots. Conclusion: This study will provide a comprehensive insight into the transcriptome of ginseng adventitious roots, and a way for successful transcriptome analysis and profiling of resource plants with less genomic information. The transcriptome profiling data generated in this study are available in our newly created adventitious root transcriptome database (http://im-crop.snu.ac.kr/transdb/index.php) for public use.

Keywords

References

  1. Wen J, Zimmer EA. Phylogeny and biogeography of Panax L. (the ginseng genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 1996;6:167-77. https://doi.org/10.1006/mpev.1996.0069
  2. Hu SY. The genus Panax (ginseng) in Chinese medicine. Econ Bot 1976;30:11-28. https://doi.org/10.1007/BF02866780
  3. Lee FC. Facts about ginseng: the elixir of life. New Jersey: Hollym International Corporation Press; 1992.
  4. Liu J, Wang S, Liu H, Yang L, Nan G. Stimulatory effect of saponin from Panax ginseng on immune function of lymphocytes in the elderly. Mech Ageing Dev 1995;83:43-53. https://doi.org/10.1016/0047-6374(95)01618-A
  5. Shin HR, Kim JY, Yun TK, Morgan G, Vainio H. The cancer preventive potential of Panax ginseng: a review of human and experimental evidence. Cancer Causes Control 2000;11:565-76. https://doi.org/10.1023/A:1008980200583
  6. Kim SH, Park KS. Effects of Panax ginseng extract on lipid metabolism in humans. Pharmacol Res 2003;48:511-3. https://doi.org/10.1016/S1043-6618(03)00189-0
  7. Kwon WS, Chung CM, Kim YT, Lee MG, Choi KT. Breeding process and characteristics of KG101, a superior line of Panax ginseng C.A. Meyer. Korean J Ginseng Sci 1998;22:11-7.
  8. Wang J, Man S, Gao W, Zhang L, Huang L. Cluster analysis of ginseng tissue cultures, dynamic change of growth, total saponins, specific oxygen uptake rate in bioreactor and immuno-regulative effect of ginseng adventitious root. Ind Crops Prod 2013;41:57-63. https://doi.org/10.1016/j.indcrop.2012.04.005
  9. Jung JD, Park HW, Hahn Y, Hur CG, In DS, Chung HJ, Liu JR, Choi DW. Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags. Plant Cell Rep 2003;22:224-30. https://doi.org/10.1007/s00299-003-0678-6
  10. Sathiyamoorthy S, In JG, Gayathri S, Kim YJ, Yang DC. Generation and gene ontology based analysis of expressed sequence tags (EST) from a Panax ginseng C. A. Meyer roots. Mol Biol Rep 2010;37:3465-72. https://doi.org/10.1007/s11033-009-9938-z
  11. Choi HI, Kim NH, Kim JH, Choi BS, Ahn IO, Lee JS, Yang TJ. Development of reproducible EST-derived SSR markers and assessment of genetic diversity in Panax ginseng cultivars and related species. J Ginseng Res 2011;35:399-412. https://doi.org/10.5142/jgr.2011.35.4.399
  12. Lee JW, Kim YC, Jo IH, Seo AY, Lee JH, Kim OT, Hyun DY, Cha SW, Bang KH, Cho JH. Development of an ISSR-derived SCAR marker in Korean ginseng cultivars (Panax ginseng C. A. Meyer). J Ginseng Res 2011;35:52-9. https://doi.org/10.5142/jgr.2011.35.1.052
  13. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009;10:57-63. https://doi.org/10.1038/nrg2484
  14. Luo H, Sun C, Sun Y, Wu Q, Li Y, Song J, Niu Y, Cheng X, Xu H, Li C, et al. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers. BMC Genomics 2011;12(Suppl. 5):S5.
  15. Sun C, Li Y, Wu Q, Luo H, Sun Y, Song J, Lui EM, Chen S. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics 2010;11:262. https://doi.org/10.1186/1471-2164-11-262
  16. Li C, Zhu Y, Guo X, Sun C, Luo H, Song J, Li Y, Wang L, Qian J, Chen S. Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer. BMC Genomics 2013;14:245. https://doi.org/10.1186/1471-2164-14-245
  17. Patel RK, Jain M. NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 2012;7:e30619. https://doi.org/10.1371/journal.pone.0030619
  18. Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: Robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 2012;28:1086-92. https://doi.org/10.1093/bioinformatics/bts094
  19. Grabherr MG, Haas BJ, Yassour M. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011;15:644-52.
  20. Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, Huang W, He G, Gu S, Li S, et al. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 2014;30:1660-6. https://doi.org/10.1093/bioinformatics/btu077
  21. Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, Morin RD, Zhao Y, Hirst M, Schein JE, et al. De novo transcriptome assembly with ABySS. Bioinformatics 2009;25:2872-7. https://doi.org/10.1093/bioinformatics/btp367
  22. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005;21:3674-6. https://doi.org/10.1093/bioinformatics/bti610
  23. Velculescu VE, Kinzler KW. Gene expression analysis goes digital. Nat Biotechnol 2007;25:878-80. https://doi.org/10.1038/nbt0807-878
  24. Haralampidis K, Trojanowska M, Osbourn AE. Biosynthesis of triterpenoid saponins in plants. Adv Biochem Eng Biotechnol 2002;75:31-49.
  25. Kushiro T, Shibuya M, Ebizuka Y. Beta-amyrin synthase-cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Eur J Biochem 1998;256:238-44. https://doi.org/10.1046/j.1432-1327.1998.2560238.x
  26. Lee MH, Jeong JH, Seo JW, Shin CG, Kim YS, In JG, Yang DC, Yi JS, Choi YE. Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 2004;8:976-84.
  27. Han JY, Kwon YS, Yang DC, Jung YR, Choi YE. Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng. Plant Cell Physiol 2006;47:1653-62. https://doi.org/10.1093/pcp/pcl032
  28. Tansakul P, Shibuya M, Kushiro T, Ebizuka Y. Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis in Panax ginseng. FEBS Lett 2006;580:5143-9. https://doi.org/10.1016/j.febslet.2006.08.044
  29. Han JY, In JG, Kwon YS, Choi YE. Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng. Phytochemistry 2010;71:36-46. https://doi.org/10.1016/j.phytochem.2009.09.031
  30. Han JY, Kim HJ, Kwon YS, Choi YE. The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 2011;52:2062-73. https://doi.org/10.1093/pcp/pcr150
  31. Kim TD, Han JY, Huh GH, Choi YE. Expression and functional characterization of three squalene synthase genes associated with saponin biosynthesis in Panax ginseng. Plant Cell Physiol 2011;1:125-37.
  32. Han JY, Hwang HS, Choi SW, Kim HJ, Choi YE. Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 2012;53:1535-45. https://doi.org/10.1093/pcp/pcs106
  33. Achnine L, Huhman DV, Farag MA, Sumner LW, Blount JW, Dixon RA. Genomics-based selection and functional characterization of triterpene glycosyl-transferases from the model legume Medicago truncatula. Plant J 2005;41:875-87. https://doi.org/10.1111/j.1365-313X.2005.02344.x
  34. Meesapyodsuk D, Balsevich J, Reed DW, Covello PS. Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding beta-amyrin synthase and a triterpene carboxylic acid glucosyltransferase. Plant Physiol 2007;143:959-69.
  35. Chen S, Luo H, Li Y, Sun Y, Wu Q, Niu Y, Song J, Lv A, Zhu Y, Sun C, et al. 454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng. Plant Cell Rep 2011;30:1593-601. https://doi.org/10.1007/s00299-011-1070-6
  36. Garg R, Patel RK, Tyagi AK, Jain M. De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 2011;18:53-63. https://doi.org/10.1093/dnares/dsq028
  37. Li D, Deng Z, Qin B, Liu X, Men Z. De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg. BMC Genomics 2012;13:192. https://doi.org/10.1186/1471-2164-13-192
  38. Xu DL, Long H, Liang JJ, Zhang J, Chen X, Li JL, Pan ZF, Deng GB, Yu MQ. De novo assembly and characterization of the root transcriptome of Aegilops variabilis during an interaction with the cereal cyst nematode. BMC Genomics 2012;13:133. https://doi.org/10.1186/1471-2164-13-133
  39. Zhang J, Liang S, Duan J, Wang J, Chen S, Cheng Z, Zhang Q, Liang X, Li Y. De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L. BMC Genomics 2012;13:90. https://doi.org/10.1186/1471-2164-13-90
  40. Vijay N, Poelstra JW, Künstner A, Wolf JBW. Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments. Mol Ecol 2013;22:620-34. https://doi.org/10.1111/mec.12014
  41. Choi HI, Kim NH, Lee J, Choi BS, Kim KD, Park JY, Lee SC, Yang TJ. Evolutionary relationship of Panax ginseng and P. quinquefolius inferred from sequencing and comparative analysis of expressed sequence tags. Genet Resour Crop Evol 2013;60:1377-87. https://doi.org/10.1007/s10722-012-9926-3
  42. Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genomics 2010;11:726. https://doi.org/10.1186/1471-2164-11-726
  43. Daniel RR, Felipe HB, Natasha TH, Louise EJ, Daniel PS. Tomato root transcriptome response to a nitrogen-enriched soil patch. BMC Plant Biol 2010;10:75. https://doi.org/10.1186/1471-2229-10-75
  44. Ge XX, Chai LJ, Liu Z, Wu XM, Deng XX, Guo WW. Transcriptional profiling of genes involved in embryogenic, non-embryogenic calluses and somatic embryogenesis of Valencia sweet orange by SSH-based microarray. Planta 2012;236:1107-24. https://doi.org/10.1007/s00425-012-1661-7
  45. Arican E, Albayrak G, Gozukirmizi N. Calli cultures from Abies equi-trojani (Aschers et Sinten) and changes in antioxidant defense system enzymes. J Environ Biol 2008;29:841-4.
  46. Kim SI, Kim JY, Kim EA, Kwon KH, Kim KW, Cho K, Lee JH, Nam MH, Yang DC, Yoo JS, et al. Proteome analysis of hairy root from Panax ginseng C. A. Meyer using peptide fingerprinting, internal sequencing and expressed sequence tag data. Proteomics 2003;3:2379-92. https://doi.org/10.1002/pmic.200300619
  47. Lee OR, Sathiyaraj G, Kim YJ, In JG, Kwon WS, Kim JH, Yang DC. Defense genes induced by pathogens and abiotic stresses in Panax ginseng C. A. Meyer. J Ginseng Res 2011;1:1-11.
  48. Sathiyaraj G, Lee OR, Parvin S, Khorolragchaa A, Kim YJ, Yang DC. Transcript profiling of antioxidant genes during biotic and abiotic stresses in Panax ginseng C. A. Meyer. Mol Biol Rep 2011;38:2761-9. https://doi.org/10.1007/s11033-010-0421-7
  49. Kushiro T, Ohno Y, Shibuya M, Ebizuka Y. In vitro conversion of 2,3-oxidosqualene into dammarenediol by Panax ginseng microsomes. Biol Pharm Bull 1997;20:292-4. https://doi.org/10.1248/bpb.20.292
  50. Hu W, Liu N, Tian Y, Zhang L. Molecular cloning, expression, purification, and functional characterization of dammarenediol synthase from Panax ginseng. Biomed Res Int 2013;2013:1-7. Article ID 285740.

Cited by

  1. Comprehensive analysis of Panax ginseng root transcriptomes vol.15, pp.None, 2014, https://doi.org/10.1186/s12870-015-0527-0
  2. Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants vol.6, pp.None, 2014, https://doi.org/10.3389/fpls.2015.01074
  3. Validation of Suitable Reference Genes for Quantitative Gene Expression Analysis in Panax ginseng vol.6, pp.None, 2014, https://doi.org/10.3389/fpls.2015.01259
  4. The Spatial and Temporal Transcriptomic Landscapes of Ginseng, Panax ginseng C. A. Meyer vol.5, pp.None, 2014, https://doi.org/10.1038/srep18283
  5. Transcriptome Analysis of Methyl Jasmonate-Elicited Panax ginseng Adventitious Roots to Discover Putative Ginsenoside Biosynthesis and Transport Genes vol.16, pp.2, 2014, https://doi.org/10.3390/ijms16023035
  6. De novo assembly and comparative analysis of root transcriptomes from different varieties of Panax ginseng C. A. Meyer grown in different environments vol.58, pp.11, 2015, https://doi.org/10.1007/s11427-015-4961-x
  7. Authentication of medicinal plants by DNA markers vol.4, pp.None, 2014, https://doi.org/10.1016/j.plgene.2015.10.002
  8. Subtractive transcriptome analysis of leaf and rhizome reveals differentially expressed transcripts in Panax sokpayensis vol.16, pp.6, 2016, https://doi.org/10.1007/s10142-016-0517-9
  9. Expression analysis of ginsenoside biosynthesis-related genes in methyl jasmonate-treated adventitious roots of Panax ginseng via DNA microarray analysis vol.58, pp.4, 2014, https://doi.org/10.1007/s13580-017-0041-4
  10. Transcriptomic Comparison Reveals Candidate Genes for Triterpenoid Biosynthesis in Two Closely Related Ilex Species vol.8, pp.None, 2014, https://doi.org/10.3389/fpls.2017.00634
  11. Integrated Transcriptomic and Metabolomic Analysis of Five Panax ginseng Cultivars Reveals the Dynamics of Ginsenoside Biosynthesis vol.8, pp.None, 2017, https://doi.org/10.3389/fpls.2017.01048
  12. De novo leaf and root transcriptome analysis to identify putative genes involved in triterpenoid saponins biosynthesis in Hedera helix L. vol.12, pp.8, 2017, https://doi.org/10.1371/journal.pone.0182243
  13. Isoform Sequencing Provides a More Comprehensive View of the Panax ginseng Transcriptome vol.8, pp.9, 2014, https://doi.org/10.3390/genes8090228
  14. Rapid amplification of four retrotransposon families promoted speciation and genome size expansion in the genus Panax vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-08194-5
  15. Identification of candidate UDP-glycosyltransferases involved in protopanaxadiol-type ginsenoside biosynthesis in Panax ginseng vol.8, pp.None, 2014, https://doi.org/10.1038/s41598-018-30262-7
  16. Ginseng Genome Database: an open-access platform for genomics of Panax ginseng vol.18, pp.None, 2014, https://doi.org/10.1186/s12870-018-1282-9
  17. Transcriptional profiling of contrasting genotypes revealed key candidates and nucleotide variations for drought dissection in Camellia sinensis (L.) O. Kuntze vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-43925-w
  18. Current State and Prospects of DNA Barcoding and DNA Fingerprinting in the Analysis of the Quality of Plant Raw Materials and Plant-Derived Drugs vol.9, pp.4, 2019, https://doi.org/10.1134/s2079086419040030
  19. Quality evaluation of Panax ginseng adventitious roots based on ginsenoside constituents, functional genes, and ferric‐reducing antioxidant power vol.43, pp.8, 2014, https://doi.org/10.1111/jfbc.12901
  20. Till 2018: a survey of biomolecular sequences in genus Panax vol.44, pp.1, 2014, https://doi.org/10.1016/j.jgr.2019.06.004
  21. Mass production of coumestrol from soybean (Glycine max) adventitious roots through bioreactor: effect on collagen production vol.14, pp.1, 2014, https://doi.org/10.1007/s11816-019-00589-2
  22. Panax quinquefolium saponin liposomes prepared by passive drug loading for improving intestinal absorption vol.46, pp.10, 2014, https://doi.org/10.1080/03639045.2020.1820036
  23. Transcriptome and complete chloroplast genome of Glycyrrhiza inflata and comparative analyses with the other two licorice species vol.112, pp.6, 2020, https://doi.org/10.1016/j.ygeno.2020.07.007
  24. Gibberellin Signaling Promotes the Secondary Growth of Storage Roots in Panax ginseng vol.22, pp.16, 2014, https://doi.org/10.3390/ijms22168694
  25. A candidate gene identified in converting platycoside E to platycodin D from Platycodon grandiflorus by transcriptome and main metabolites analysis vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-89294-1