DOI QR코드

DOI QR Code

A Study on Synthesis Acrylic Polymer Resin and Mechanical Properties Containing Monoammonium Phosphate

Monoammonium phosphate를 포함한 아크릴 수지의 합성 및 물성에 관한 연구

  • Lee, Joo-Youb (Department of Disaster Management and Safety Engineering, Jungwon University) ;
  • Kim, Ki-Jun (Dept. of Chemical Engineering, Daejin University)
  • 이주엽 (중원대학교 방재안전공학과) ;
  • 김기준 (대진대학교 화학공학과)
  • Received : 2014.08.28
  • Accepted : 2014.09.23
  • Published : 2014.09.30

Abstract

For this research, synthesis acrylic resin by ethyl acrylate monomer(EAM) and prepared samples which set by difference amount of monoammonium phosphate solution in waterborne acrylic resin. Use these resins, analyzed mechanical properties and thermal stability by films and leather surface coated. The test of DSC experiment sample WAC-APS3 was $410^{\circ}C$ Tm values which means the highest content of monoammonium phosphate had highest thermal stability in acrylic resin. According to measure data for solvent resistance, all samples showed good property. As known in the results, increase of ammonium phosphate constant did not influence to big change of resin properties. In abrasion test WAC-APS3 was good abrasion properties(68.729 mg.loss). Test of tensile strength, as increase as monoammonium phosphate resin analyzed low properties $1.505kgf/mm^2$ to $1.275kgf/mm^2$. In elongation case, same as strength test result 425 % to 384 % by increase to monoammonium phosphate amount in acrylic resin.

본 연구에서는 ethyl acrylate monomer(EAM)을 사용한 수용성 아크릴 수지를 합성한 후 monoammonium phophate를 수용액 상태로 녹인 뒤 이를 아크릴 수지에 함양을 달리한 시료를 준비하여 각각의 필름 상태 및 피혁 외부에 코팅하여 기계적 물성측정 및 열안정성 물성 측정 실시하여 각각의 시료를 비교 검토 하였다. DSC를 이용한 열안정성 측정 결과 monoammonium phosphate 함량이 높은 시료(WAC-APS3)의 Tm 값이 $410^{\circ}C$ 로 가장 높은 열안정성을 확인할 수 있었다. 내용제성 측정결과 아크릴 수지 및 브랜딩 된 수지 모두 높은 내용제성을 확인 할 수 있었다. 내마모성 측정결과는 monoammonium phosphate 함량이 높은 수지가 우수한 물성(68.729 mg.loss)을 보였으나, 인장 강도, 연신율 측정치에서는 monoammonium phosphate 함량이 높아질수록 물성이 저하되어 아크릴 수지의 인장력인 $1.505kgf/mm^2$ 보다 낮은 $1.275kgf/mm^2$ 이 측정되었으며, 연신율의 경우 수용성 아크릴 수지 단독 시료의 연신율인 425% 보다 낮은 384% 가 측정되었다.

Keywords

References

  1. S. K. Kim, P. W. Shin, D. C, Lee, Synthesis of Water Soluble Acrylic Modified Epoxyester Resin and Physical Properties of Coatings, J. Kor. Oil Chemist's Soc., 28, 35 (2011).
  2. Richard A. Brown, Richard G. Coogan, Dave G. Fortier, Michael S. Reeve, Joseph D. Rega, Comparing and contrasting the properties of urethane/acrylic hybrids with those of corresponding blends of urethane dispersions and acrylic emulsions, Progress in Organic Coatings, Volume 52, 73 (2005). https://doi.org/10.1016/j.porgcoat.2004.03.009
  3. N. Dunne, J. Clements, J-S. Wang, 8-Acrylic cements for bone fixation in joint replacement, Joint Replacement Technology (Second Edition), 212 (2014).
  4. H. Kolya, S. Das, T. Tripathy, Synthesis of Starch-g-Poly-(N-methylacrylamide-coacrylic acid) and its application for the removal of mercury (II) from aqueous solution by adsorption, European Polymer Journal, 58, 1 (2014). https://doi.org/10.1016/j.eurpolymj.2014.05.019
  5. Z. Zhong, Q. Yu, H. Yao, W. Wu, W. Feng, L. Yu, Z. Xu, Study of the styrene-acrylic emulsion modified by hydroxylphosphate ester and its stoving varnish, Progress in Organic Coatings, 76(5), 858 (2013). https://doi.org/10.1016/j.porgcoat.2013.02.008
  6. N. S. Allen, C. J. Regan, R. McIntyre, B. W. Johnson and W.A.E. Dunk, The photooxidation and stabilisation of water-borne acrylic emulsions, rogress in ragnic Coatings, 32, 9 (2007).
  7. F. Zhang and C. L. Yu, Acrylic emulsifier-free emulsion polymerization containing hydrophilic hydroxyl monomer in the presence or absence of nano-$SiO_2$, European Polymer Journal, 43, 1105 (2007). https://doi.org/10.1016/j.eurpolymj.2007.02.007
  8. Y. Okamoto, Y. Hasegawa and F. Yoshino, Urethane/acrylic composite polymer emulsions, Progress in Organic Coatings, 29, 175 (1996). https://doi.org/10.1016/S0300-9440(96)00660-1
  9. K. Nishiwaki and M. Katou, Fluoric/acrylic composite polymer particles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 153, 317 (1999). https://doi.org/10.1016/S0927-7757(98)00452-X
  10. P. Thomas, Waterborne and Solvent Based Surface Coating Resins and their Applications-Polyurethanes, Sita Technology Ltd., London, pp 141-158 (1999)
  11. M. Angeles P. L. anaa, Ana M. Torro -Palaua, A. C. Orgiles-Barcelo, J. Miguel M. M. Nezb, Characterization of waterborne polyurethane adhesives containing different amounts of ionic groups, International Journal of Adhesion and Adhesives, 25, 507 (2005). https://doi.org/10.1016/j.ijadhadh.2005.02.002
  12. S. Sundar, N. Vijayalakshmi, S. Gupta, R. Rajaram, G. Radhakrishnan, Aqueous dispersions of polyurethane-olyvinyl pyridine cationomers and their application as binder in base coat for leather finishing, Progress in Organic Coatings, 56, 178 (2006). https://doi.org/10.1016/j.porgcoat.2006.04.001
  13. R. A. Brown, R. G. Coogan, D. G. Fortier, M. S. Reeve, J. D. Rega, Comparing and contrasting the properties of urethane/acrylic hybrids with those of corresponding blends of urethane dispersions and acrylic emulsions, Progress in Organic Coatings, 52, 73 (2005). https://doi.org/10.1016/j.porgcoat.2004.03.009
  14. R. Sadeghi, H. B. Kahaki, Thermodynamics of aqueous solutions of poly ethylene glycol di-methyl ethers in the presence or absence of ammonium phosphate salts, Fluid Phase Equilibria, 306(2), 219 (2011). https://doi.org/10.1016/j.fluid.2011.04.012
  15. D. Saihi, I. Vroman, S. Giraud, S. Bourbigot, Microencapsulation of ammonium phosphate with a polyurethane shell. Part II. Interfacial polymerization technique, Reactive and Functional Polymers, 66(10), 1118 (2006). https://doi.org/10.1016/j.reactfunctpolym.2006.02.001
  16. D.A. Purser, Chapter 2-Fire Safety Performance of Flame Retardants Compared with Toxic and Environmental Hazards, Polymer Green Flame Retardants, 14 (2014).
  17. J. Hu, J. Shan, D. Wen, X. Liu, J. Zhao, Z. Tong, Flame retardant, mechanical properties and curing kinetics of DOPO-based epoxy resins, Polymer Degradation and Stability, 109, 218 (2014). https://doi.org/10.1016/j.polymdegradstab.2014.07.026