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Abstract

In this paper, we investigate the properties of join and meet preserving maps in complete
residuated lattice using Zhang’s the fuzzy complete lattice which is defined by join and meet on
fuzzy posets. We define L-upper (resp. L-lower) approximation operators as a generalization
of fuzzy rough sets in complete residuated lattices. Moreover, we investigate the relations
between L-upper (resp. L-lower) approximation operators and L-fuzzy preorders. We study
various L-fuzzy preorders on L~ . They are considered as an important mathematical tool for

algebraic structure of fuzzy contexts.
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1. Introduction

Pawlak [1, 2] introduced the rough set theory as a formal tool to deal with imprecision and
uncertainty in the data analysis. Hajek [3] introduced a complete residuated lattice which
is an algebraic structure for many valued logic. By using the concepts of lower and upper
approximation operators, information systems and decision rules are investigated in complete
residuated lattices [3-6]. Hajek [3] and Bé€lohlavek [4] developed the notion of fuzzy contexts

using Galois connections with R € LX*Y

on a complete residuated lattice. Zhang et al. [7, 8]
introduced the fuzzy complete lattice which is defined by join and meet on fuzzy posets. It is
an important mathematical tool for algebraic structure of fuzzy contexts [1, 2, 5-11]. Kim [12]
showed that join (resp. meet, meet join, join meet) preserving maps and upper (resp. lower,
meet join, join meet) approximation maps are equivalent in complete residuated lattices.

In this paper, we investigate the properties of join and meet preserving maps in complete
residuated lattice. We define an L-upper (resp. L-lower) approximation operator as a gen-
eralization of fuzzy rough set in complete residuated lattices. Moreover, we investigate the
relations between L-upper (resp. L-lower) approximation operators and L-fuzzy preorders.

We give their examples.

Definition 1.1. [3] A triple (L,V, A, ®,—, L, T) is called a complete residuated lattice if it
satisfies the following properties:

(L1) (L,V,A, L, T)is a complete lattice where L is the bottom element and T is the top
element;

(L2) (L,®, T) is a monoid;
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(L3) adjointness properties,i.e.
r<y—ziff rOy <z

A map * : L — L defined by a* = a — L is called a strong

Tr(y) = { #

In this paper, we assume that (L, V,A\,®,—,* L, T) be a

negation if a*™* = a.

Tac(y) = { o

if y =, if y ==,

1, otherwise. otherwise.

complete residuated lattice with a strong negation *.

Definition 1.2. [7, 8] Let X be aset. A functioneyx : X x X —
L is called:

(El) reflexive if ex (z,2) = 1 forall z € X,

(E2) transitive if ex (z,y) © ex(y,2) < ex(z, z), for all
z,y,z € X,

(BE3)ifex(z,y) = ex(y,x) =1,thenz = y.

If e satisfies (E1) and (E2), (X, ex) is a fuzzy preorder set.

If e satisfies (E1), (E2) and (E3), (X, ex) is a fuzzy partially
order set (simply, fuzzy poset).

Example 1.3. (1) We define a function e, : L x L — L as
er(z,y) = x — y. Then (L, ey,) is a fuzzy poset.
(2) We define a function e; x : LX x LX — L as

erx(4,B) = |\ (Alx) > B(x)).

reX

Then (LX, ey x) is a fuzzy poset from Lemma 2.10 (9).

Definition 1.4. [7, 8] Let (X, ex) be a fuzzy poset and A €
Lx.

(1) A point z is called a join of A, denoted by z¢y = LA, if
it satisfies

a1 Az) < ex(z, xo),

02) Aex (A@) = ex(w,9)) < ex(0.y).

A point z; is called a meet of A, denoted by x; = MA, if it
satisfies

M1) A(x) < ex(x1,z),

M2) A\, x (A(2) = ex(y,2)) < ex(y,1).

Remark 1.5. Let (X, ex) be a fuzzy poset and A € LX.
(1) If g is a join of A, then it is unique because ex (zo,y) =

ex (yo,y) forally € X, puty = x¢ or y = yo, then ex (2o, yo)
= ex (yo,xo) = T implies z¢p = yo. Similarly, if a meet of A
exist, then it is unique.
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(2) x¢ is a join of A iff

/\ (A(SL’) - eX(m,y)) = eX(aj07y)-
zeX

(3) x1 is a meet of A iff

N (A@@) = ex(y.2)) = ex(y, z1).

zeX

Remark 1.6. Let (L, ey,) be a fuzzy posetand A € L.

(1) Since g is a join of Aiff A _; (A(z) — er(z,y)) =
Mocr(A@) = (@ > 1)) = Voen(z © A@) — y =
er(w0,y) = xo — y, thenzg = UA = \/ ., (v © A(7)).

(2) Since x is a join of A iff A\, (A(z) — er(z,y) =

Neer(A(@) = (y = 2)) = Nperly = (Al) = 2)) =
Y — Nyer(A(z) = x) =y — NA, then

A= )\ (A(z) - 2).

xz€L

Remark 1.7. Let (LX, e x ) be a fuzzy poset and & € L™ .
(1) We have U® = \/ ,; x (®(A4) ® A) from:

/\AeLx@(A) — epx (A, B))
— e1x (Vaepx (B(A) © 4), B) = e x (UD, B).

(2) We have M® = A , ./ x (®(A) — A) from:

Aacrx (P(A) = erx (B, A)
- /\AELX erx (B7 (q)(A) — A))
=erx(B, /\AeLX<(I)(A) — A)).

Definition 1.8. [7, 8] Let (LX,e;x) and (LY, ey v ) be fuzzy
posets.
(1) H : LX — LY is a join preserving map if

H(UD) = LH ™ (D)

forall ® € LX™, where H~ (®)(B) = /3 4)—p ®(A).
(2) J : LX — LY is a meet preserving map if

J(M®) =nNJ7(d)
forall ® € LL™ .

Theorem 1.9. [12] Let X and Y be two sets. Let (L%, e x)
and (LY, e v ) be fuzzy posets. Then the following statements
are equivalent:

(1) H : L — LY is a join preserving map iff H(a © A) =
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a@OH(A)and H(\/ o, Ai) =
and o € L.

(@) J : LY — LY is a meet preserving map iff J(a —
A) = a — J(A)and T(\;c; Ai) = Niep T(A;) for all
A A, e L¥ anda € L.

Vier H(A;) forall A, A; € L,

Lemma 1.10. [3, 4, 9] Let (L,V,A,®,—,*, L, T) be a com-

*

plete residuated lattice with a strong negation *. For each
z,Y,2,%;,Y; € L, the following properties hold.

(1) ® is isotone in both arguments.

(2) — is antitone in the first and isotone in the second argu-
ment.

B —y=Tiffx <y.

@Dzrx—>T=Tand T -z =z.

Gzxoy<LzAy.

©6) 2O (Vier¥) = Vier(x © ) and (V;ep i) ©y =
vier(xi O] y)
Nz = (Nier %) = Nier(@ = yi) and (V;cp2i) =y =

Nier(@i = y).
®) Vier i = Vier ¥i) = Nier(zi = i)
QO (z—=y)er<yand(y—2)0(zx—>y) <
10z —=y<(y—2) = (x—2).
(D Njer @7 = (Vyer @)™ and \;cp 27 = (Njep i)™
(1) (z0y) 2 z=2— (y—>2) =y — (x — 2) and
(zOy)" =z —y*.
(13 z* > y*=y—zand (x = y)* =2 O y"

(x — 2).

2. L-upper Approximation Operators and Join
Preserving Maps

Theorem 2.1. Let (L%, e, x) be a fuzzy poset. Let H,H ! :
LX — LX be join preserving maps such that H T (y) =
H(T,)(z). Let J,T7' : L¥ — LX be meet preserving
maps such that 7 ~1(T%)(y) = J(Ty)(z) and H(T,)(y) =
J*(T%)(y). Define mappings H~,J> H",J< : LX —
LX as follows:

H7(A,B) =erx (A, H(B)),

HH(A7 B) =€rx (A7 Hfl(B))

J7(A,B) = e x(J(A),B),
JT(A,B) = e x (T 1(A),B).

Then we have the following properties.
() H(A)(y) = V. (Az) © H(T2)(y) and T(A)(y) =
Ao (A () = T(T3)(Y))-

www.ijfis.org

(2) H?(Tq, B) = H(B)(x), H (T, B) = H™H(B)()
H™ (Ta, Ty) = H(Ty) (@), H (T, Ty) = HH(Ty)(2).
(3) J7(A, TS ) T (B)(@), J7 (A, T3) = T (A) (=),
J7(Ty, Ta) =T (Ty))(@), J<(Ty, T5) =T~ (T))(@).
) H(T2)(y) = T (T3)(y) iff
H™ (B, A) = J~ (A%, B*)
iff
H™ (A, B) = J<(B*, A",
(5) erx(H(A),B) = erx(A,J1(B)), and

erx (H_l(A)’B) =€rx (AvJ(B))'

©) epx (H(T1(B)),B) = epx (A, T (H

and

(A) =T,

erx(HH(T(B)), B) = erx (A, T(H™'(4))) = T.

(7) exx (A, B) < epx(H(A),H(B)) and epx (A, B) <
erx(J(A),T(B)).
(8) epx (A, B) < e, ,x (H™)4,and

(H7)p) = erx(H(A), H(B)),

where (H7)4(C) = H7(C, A).
9 epx(B,A) <e;px((J7)4, and

(J7)P) = erx(J(B), T (A)),

where (J7)4(C) = J7(4,0).
(10) (Hp)7(A,B) <e;.x((H7)a,(H7)p), where

Hp(Ta)(y) = epx (H(Ty), H(T2)).

(1) (Hy)* (A, B) < epux (H) a, (H) ), where
Ho(Ta)(y) = erx (K7 (Ta), HH(Ty))-

(12) (H,)7(A,B) < e, .x((H")a,(H")p), where
Ho(Ta)(y) = epx(HTHTy), H 1 (TL)).

(13) (H;)(A,B) <e;.x((H7)a,(H7)p), where

Ht(Ta:)(y) = €rx (H(Tw>7H(Ty))

L-upper approximation operators and join preserving maps | 224
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Proof. (1) For A = \/ . v (A(z) ® T,),

H(A)(y) =H(\/ (Alz) © T2))(y)

zeX

=\ (Al2) ©H(T2)())-

rzeX

T(A)(y) =T ( )\ (A"(2) = TD))(y)

zeX

= /\ (A
reX

Q) H7 (T2, B) = Nyex(Ta2(y) = H(B)(y)) = H(B)(z).
Other cases are similarly proved.

(3)J7 (B, T3)
Other cases are similarly proved.

@) Let H(T2)(y) = T*(T7)(v).
J7(A*, B*) from:

= H(T2) ()

Then H7 (B, A) =

H~(B,A) = epx (B, H(A

~
~
I
8
~
><
—~
X
*
—~
h
~—
sy
~—

Let H~ (A, B) = J(B*,A*). Put A= T, and B = T,.

H(Ta)(y) = H7(Ty, To) = J7 (T3, Ty) = T (T2) (1)

Other case follows from: H~1(T,)(y) = J 1 (T%)(y) iff
H“(A, B) = J<(B*, A").
&)
ex (H(A), B)
= Nyex(H(A)(y) = B(y))
= Nyex Vaex (Alx) ©H(T2)(y)) = Bly)
= /\yeX /\zeX(A(x) - (j_l* ) -
= Npex(A(@) = /\yGX(B(y) )
Naex(A@) = T H(Ayex (Bly) = T7)
Neex(A(@) = TH(B)(x))
erx (A, J7H(B))

(©) By (5), epx (M(A), H(A)) = epx (A,
Tandepx(H 1 (A),B)=epx(A, T (H?!

(7)Since efx (A, B)OA(z)OH(T2)(y)
ep (A, B) < epx (H(A), H(B).
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= Nyex (T (B)(y) = Ti(y)) = T*(B)(x).

Since (B*(z) = A*(2))0(A"(z) = J(T3)(y)) < A™(z) —
J(T2) (), erx (A, B) < epx(J(A), T (B)).

(8) Since (A(x) = B(x))© (C(y) = A(z) OH(T2)(y) ©
C( ) ( )Q%(Ta)(y) ff (A(z) — B(z)) < ((Cly) —
D) = ( v) = B@) 0 H(T.)()) . we
haveeLx(A B ) <e;x((H7)a,(H7)B).
epox (H7)A, (H7)P)
= Neerx (H)AC) = (H7)P(C))
= Acerx(H7(A,C) = H7(B,C))
< Npex(HT (AT )—)H*(B )
= Noex(H*(A)(x) = H*(B)(x))
= Naex (H(B)(z) = H(A)(2))
Neex (H*(A)(z) = H*(B)(z))
O Npex (C7(x) = H*(A)(x)) © C*(x)
< (H*(A)(z) = H*(B)(x)

O(C" () = H* (A )( ) ©C*(x)
< (H*(A)(z) = H*(B)(x)) © H*(A)(x) < H"(B)(x)

Naex (H*(A)(x) = H*(B)(x))
< Naex (C7 (@) = H*(A)(2))

= Naex (C7(z) = H*(A)(2))
=H7(AC)— H7(B,C)

(9) Since (B*(z) — A*(x))o(C
c%><m<mj<><n<<>+3<» () -

B (x)® W) — (C*( T(THW)
wehaveeLx(A B)<€LLX(( ) ( _>) )

epux (J7)4(J7)F)
= Acerx (T)HE) = (J7)P(C))
= Neerx(J7(A,C) = J7(B,0))
= Acerx(erx(Tr(A),C) = erx (Jr(B),C))
> epx (Jr(B), Tr(4)) = epx (B, A).

epx (J7)4,(T7)7)

= Neerx (J7)HC) = (J7)P(0))
= Ncerx(J (A C)— J7(B,C))
S Noex(J7(ATE) = J7(B, T3))
= Neex(Tp(A)(z) = T5(B
= Neex(Tr(B)(z) = Tr(A
= erx(Jr(B), Tr(4)).

)(x))
)(y))

(10)

“(y) = B (2)oT " (T)()©
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(Hp)™ (A, B) ©
= Naex(A(@) =V, (B(y) © Hp(
OHT)(C,A) o C(2)
< (A(x) = V,(B(y) ©
(C(2) = V. (A(2) ©H(T2)(2))) © C(2)
< V. (A@) =V, (B(y) © Hp(Ty)(2)))
O(A(z) © H(T4)(2)))

(H7)a(C) o C(z)
Ty)(@)))

Hp(Ty)(2)))O

(1D

(Hs)" (A, B)© (HT)a(C)© C(2

)
= Naex(A(@) =V, (B(y) © Hs(T2) (1))
O(HT)(C,A)
z) =V, (B(y

(12) and (13) are similarly proved.

Definition 2.2. [12] (1) A join preserving map H : LX — LX
is called an L-upper approximation operator iff it satisfies the
following conditions

(H1) A < H(A),
(H2) H(H(A)) < H(A).
(2) A meet preserving map J : LX — LX is called an

L-lower approximation operator iff it satisfies the following
conditions

D J(4) <A
J2) 7(T(A)) = T(A).

Example 2.3. Let R € LX*X be a fuzzy relation. Define

www.ijfis.org

H,J : L* — LX as follows

T ) = )\ (Rlz,y) —» Ax)).

zeX
(1) Since H(a © A) = a © H(A) and H(V,p A
Vier H(A;), H is a join preserving map.
(2) Since J(a = A) = a — J(A) and J(\;cp Ai) =
Nier J(A;), J is a meet preserving map.
3)[5,9, 12] If Ris an L-fuzzy preorder, then H and J are

L-upper and L-lower approximation operators, respectively.

i) =

Theorem 2.4. Let H, 7 : LX — LX be L-upper and L-lower
approximation operators, respectively. The following state-
ments hold.

(1) A(z) = epx (H(T4), A) for each A = H(A).

@) H(Ty) (@) = epx (H(T2), H(Ty)).

(3) A(z) = epx (A*, J(T%)) for each A* = J(A*).

&) T (Ty)(@) = ex (T(T5), T(T3)).

Proof. (1)

erx (H(T2), H(A) = Ayex (H(T2)(y) = H(A)(y))
= Nyex H(T2) () = V.ex (A(2) OH(T:)(y))
> Nyex (H(T2)(y) = (A(z) O H(T2)(y)) = Alz).

(2) Since H(T,) = H(H(Ty)), by (1),

H(Ty)(2) = epx (H(T2), H(Ty))-

3
erx (A", T(T3)) = Nyex (A" (y) = T(T7)(v))
< A%(z) = Ti(z) = (x)
erx(J(A"), T(T3))

= Nyex(NAZ) = T(T2)() = T(T3)(W)

> Nyex (A(z) = T(T2) () = T(T3)([¥))
> A(x).

(4) Since J(T3) = J(J(T3)). by 3),

T (Ty)(x) = epx (T (T), T(T3))-

L-upper approximation operators and join preserving maps | 226
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Theorem 2.5. Let H,H ' : LX — LX be L-join preserving
operators. The following statements are equivalent.
(D) Ty <H(Ty)and H(H(T,)) < H(T,) forallz € X.
() Ta < H(T,) and H(T,)(y) = exx (H(T,) H(T.)).
(3) There exists an L-fuzzy preorder Ry € LX*X such that

H(A)(y) = \/ (A@) © Ru(z,y)).
zeX
@ T, <H Y T)and H Y (HY(T,)) = H(T,) for
all x € X.
(5) To <H(T,)and

HH(Ty) () = epx (KT (Ta), HTH(Ty))-

(6) There exists an L-fuzzy preorder Ry -1 € L**X such
that

H(A)(y) =\ (A@) © Ry (2, y)).

z€X

(7) H is an L-upper approximation operator.

(8) H~! is an L-upper approximation operator.

(9) H? (A, B) = e x (H(A), H(B)), for A, B € L*.

(10) H=(A,B) = erx(H'(A),H *(B)), for A,B €
LX.

(11) H is an L-fuzzy preorder on LX.

(12) H* is an L-fuzzy preorder on LX .

Proof. (1) < (2). For H(T,) =
have

Vyex(H(T2)(y) © Ty), we

HH(T2))(2)
= H(Vyex(H(T2)(y) © Ty))(2)
= Vyex(H(T2)(y) © H(Ty)(2)) < H(T2)(2).

H(Tm)(y) < /\zeX H(T )( ) — H(Tm)( )
S H(Ty)(Y) = H(T2)(y) = H(T2)(y).
Hence H(T,)(y) = erx (H(Ty), H(T)). Conversely, it is
similarly proved.
()< (3). Put Ry (x,y) = H(T4)(y). Since T = T, (z) <
H(Tz)(z) = Ry (z,z) and

HH(T2))(2) =\ H(T2)y) ©H(T,)(2)

yeX

=V (Ru(a,9) © Ru(y,2) < H(T4)(2)
yeX

= Ry(x,z)
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forall z,y € X.

H(H(T2))(2) = Vyex (H(T2)(y) ©H(Ty
= VyeX(RH( 7y) © RH(ya Z))
< H(T2)(2) = Ru(z, z).

)(2))

Conversely, since Rp (2, y) = H(Tz)(y), itis similarly proved.

(1) & (4). It follows from:

HH(T2))(2)

= \/yeX< HTy)(@) 0 HH(T2)(y)
= H (KN (T2)) (@)
< H(T2)(2) = HH(T2)(@).

(4) < (5) and (4) < (6) are similarly proved (1) < (2) and
(1) & (3), respectively.

()& ().
H(H(A))(2)
= Vyex(H(A)(y) © H(Ty)(2))
= Vyex Vaex (A2) OH(T2)(y) © H(Ty)(2))
= Vaeex(A@) O Ve x (H(T2)(y) © H(Ty)(2)))
< Vaex (A(@) ©H(T2)(2)) = H(A)(2))

(N =)

= epx (A, H(A))
<erx(A,H(B) = H* (A, B)
<erx(H(A), H(H(B)))
= erx(H(A),H(B)
©) = (11)
H~(A,B)® H(B,C)
= epx (H(A),H(B)) ® erx (H(B), H(C))
< epx (H(A),H(C)) = H>(A,C)

(11) = (1). Since T = H7(T,, T,) forall x € X, then
Te <H(T,)forallz € X.

H7(T,, Ty) ©H7(Ty, Ty)

=epx (T2, H(Ty)) ©epx (Ty, H(Tx))
=H(Ty)(2) ©H(T2)(y)
Sepx (T, H(T2)) = H(T2)(2)-

Other cases are similarly proved.
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Theorem 2.6. Let 7,7 ' : LX — LX be L-meet preserving (D& @).
operators. The following statements are equivalent.

. . . . T(IT(T3)(2)
DJ(TE) < Trand J(Ti)(z) < J(J(TL))(2)) for all
. i)eX( : (e (T = Nyex (T (T2)(y) = T(T))(2))
e . . = Nyex (T (T (@) = T HTH®))
DI = T D AT T T )
(3) There exists an L-fuzzy preorder R; € such that _ j*l(j (T;))(z) > 7(T5)(2) = jfl(Tj)(x).
J(A)(y) = é\X (Ry(z,y) = A(x)). @) = (5) and (4) < (6) are similarly proved (1) < (2) and

(1) & (3), respectively.
@I NTH<Trand T 1 (TH)(2) < T YT Y T)(z) D& (D). Since T(A)*(y) = (Npex (A7 (x) = T (1)) =
forall z,z € X. Viex(A%(z) © T*(T7)(y)), we have
G) T (Ti)(x) = epx (T H(T3), T HTH).

(6) There exists an L-fuzzy preorder R;-1 € L**X such

J(T(A)(z)
= Nyex (T (A)(y) = T(T3)(2))

that
_ B = Nyex Voex (A% (@) © T*(T2)() = T(T3)(2))
T HA)) = x/;((RJ—l(w?y) — A(z))- = Nyex Naex(A"(x) = (T (T2 (y) = T(T3)(z
_ o = Noex (A% (@) = Nyex (T (T2)() = T(T5)(2))
(7) J is an L-lower approximation operator. > N,ex (A% (@) = T(T2)(2) = T(A)(2).
(8) J ! is an L-lower approximation operator.
(9) J7 (A, B) = erx(J(A), J(B)), for A, B € LX. M= .
L}glO) J(A,B) = erx(J1H(A), T YB)), for A,B € erx (T(A), T(B)
' . =erx(J(A), J(B)) ©erx(J(B), B)
(11) J~ is an L-fuzzy preorder on L~. < epx(T(A), B) = J= (A, B)
(12) J< is an L-fuzzy preorder on LX. <erx(J(A),T(T(B)))
=erx(J(A), T (B))
Proof. (1) & (2). For J(T%) = /\yeX(j*(T;)(y) = T3
we have 9) = 1D).
T(T(T))(2) J7(A,B)© J7(B,C)
T (Nyex (T (To)(y) = T5)(2) =erx(J(A),J(B)) ©eLx(J(B), I (C))
= Nyex (T (T2 (y) = T(T3)(2) =2 T(T2)(2). Serx(J(A),J(C)) =J7(AC)
T (M) < Nex T(Ti)(2) = T(T;)(2) (11) = (1). Since T = J7(T%,T*) for all z € X, then

<I(T)) =IT(THW) =T (TH).  J(05) < Trforallz € X.

Hence J*(T})(z) = erx (J(T}), J(T})). Conversely, it is

similarly proved.

x? Yy Yy z

| = e (T(T2). T5) @ epx (F(T5), TD)
(1) (3). Put Ry(z,y) = J*(T*)(y). Since T = T, (x) < _ j*(T;)(y) o j*(T;)(z)
T (T)(x) = Ry(z,x) and <epx(J(T3), T2 = T*(T3)(2).

J(IT(TN(z) = /\ (T (M) = T(T)(2) = T(T1)(2) Other cases are similarly proved.
yeX

iff Vyex (T7(T2) () © T*(TH)() = Vyex(Ry(z,y) © Example 2.7. Let (L = [0,1],®,—,* ) be a complete residu-
Ri(y,2)) < TJ*(T%)(2) = Ry(z,z) forall z,y € X.

Conversely, since Rj(x,y) = J*(T5)(y), it is similarly
proved. xOy = (z+y—-1)V0, 2 - y=(1—-2+y)Al, ¥ =1—=z.

ated lattice with the law of double negation defined by
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Let X = {z,y, 2} and A, B € L as follows:
Az) = 0.9, A(y) = 0.8, A(z) = 0.3,

B(z) =0.3,A(y) = 0.7, A(z) = 0.8

Define H(1,)(y) = J*(1%)(y) as follows

H(le)(@) =1 H(l)(y) =08 H(l.)(z) =0.6

H(1y)(x) = H(1y)(y) =1 H(ly)(2) =03

H(1:)(x) =05 H(l)(y) =06  H(l.)(y) =1

(1) Since H(H(1.))(2) = V,yex (H(L) (1) © H(1,)(2) =
H(1:)(z) and 1, < H(1,) forall z,y € X, then H is an L-
upper approximation operator. Since H(A4)(y) =V, x (A(z)®
(H(1:)(y)), we have
H(A) = (0.9,0.8,0.5), H(B) = (0.4,0.7,0.8).

Moreover, by Theorem 2.12, ey x (A, B) = 0.4 and

H™ (A, B) = epx (A, H(B))
— epx (H(A), H(B)) = 0.5.

(2) Since 7(J (13))(2) = Ayex (T (15)(y) = T(15)(2) =
J(1%)(z)and 1, < J*(1%) for all z,y € X, then J is an L-

lower approximation operator. Since

J(A)y) = N\ (A" (z) = (T(13) ),
reX
we have
J(A) =(0.8,0.7,0.3), J(B) = (0.3,0.5,0.7),

J= (A, B) = epx (J(A), B)
= erx (T(A), J(B)) = 0.5.

(3) We obtain H™1(1,)(y) = H(1,)(z) = T (1%)(y) as

follows
H (1) (x) =1 ’H_l(lw)(y) =0.7 H'1,)(z)=0.5
HH(1y)(z) = H (L)) =1 H ' (1,)(2) =06
H (1) (2) = H’l(lm)(y) =03 H ' (l)(y) =1
Since \/yEX( 1(1$)(y) © H_1(1y>(z) = H_l(lw)(z) and

L, <H (1
approximation operator. Since H ™
(H71(1.)(y)), we have

¢) for all z,y € X, then H~' is an L-upper
HA) (1) = Vyex(Al@) ©

H 1 (A) = (0.9,0.8,0.4), H ' (B) = (0.5,0.7,0.8).
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H<(A,B) = epx (A, H~(B))
= epx (H—1(A), H~'(B)) = 0.6.

@) Since JHIT 1 1)(2) = Nyex (T 10y —
T H15)(2) = T (15)(2) and 1, < J*(13) for all z,y €
X, then J ! is an L-lower approximation operator. Since
T HA) (W) = Npex (A*(@) = (T7H(13)(y)), we have

J1(A) =(0.7,0.8,0.3), T *(B) = (0.3,0.6,0.8),

Jﬁl%(AvB) =erx (jil(A)vB)
=erx (T 1A), T 1(B)) =0.6.

3. Conclusions

In this paper, by using the concepts of fuzzy complete lattices
[7, 8], we generalized lower and upper approximation operators
without fuzzy relations in complete residuated lattices. The
relations between L-upper (resp. L-lower) approximation op-
erators and L-fuzzy preorders are also analyzed. The studied
L-fuzzy preorders on L* are an important mathematical tool

for algebraic structure of fuzzy contexts.
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