DOI QR코드

DOI QR Code

옥수수 유전자 기능 분석을 위한 전사인자의 이해

Transcription Factor for Gene Function Analysis in Maize

  • 문준철 (강원대학교 농업생명과학연구원) ;
  • 김재윤 (고려대학교 생명과학대학 생명공학부) ;
  • 백성범 (농촌진흥청 국립식량과학원) ;
  • 권영업 (농촌진흥청 국립식량과학원) ;
  • 송기태 (동국대학교 생명과학과) ;
  • 이병무 (동국대학교 생명과학과)
  • Moon, Jun-Cheol (Agriculture and Life Sciences Research Institute, Kangwon Nat'l Univ.) ;
  • Kim, Jae Yoon (College of Life Science and Biotechnology, Korea Univ.) ;
  • Baek, Seong-Bum (National Institute of Crop Science, RDA) ;
  • Kwon, Young-Up (National Institute of Crop Science, RDA) ;
  • Song, Kitae (Plant Molecular Genetic Lab., Dep. Of Life Science, Dongguk Univ.-Seoul) ;
  • Lee, Byung-Moo (Plant Molecular Genetic Lab., Dep. Of Life Science, Dongguk Univ.-Seoul)
  • 투고 : 2013.09.23
  • 심사 : 2014.05.13
  • 발행 : 2014.09.30

초록

전사인자는 식물에서 유전자 발현을 조절하기 위해 필수적이며, 유전자의 promoter나 enhancer 부위에 결합하며, 기본 전사 조절, 전사의 향상, 발달, 세포내 신호전달, 환경에 반응, 세포 주기의 조절 등의 역할을 수행한다. 옥수수 게놈의 염기서열 분석은 전사인자의 유전자 발현 조절의 기작을 이해하는데 도움을 줄 것으로 기대된다. 과거 옥수수의 전체 게놈의 중복으로 옥수수에서 4,000개 이상의 전사인자가 코딩 될 것으로 예상된다. 본 논문에서는 옥수수의 ABI3/VP1, AP2/EREBP, ARF, ARID, AS2, AUX/IAA, BES1, bHLH, bZIP, C2C2-CO-like, C2C2-Dof, C2C2-GATA, C2C2-YABBY, C2H2, E2F/DP, FHA, GARP-ARR-B, GeBP, GRAS, HMG, HSF, MADS, MYB, MYB-related, NAC, PHD, WRKY 전사인자의 특징을 간략히 서술하고, 전사인자의 염기서열을 분석하여 sequence logo를 통하여 각각의 도메인을 표시하였다. 이러한 전사인자 및 관련된 유전자의 분자생물학적 연구는 옥수수에서 중요한 기능을 하는 유전자의 발굴 및 육종을 위한 목표 유전자의 선발에 도움을 줄 것으로 기대된다.

Transcription factors are essential for the regulation of gene expression in plant. They are binding to either enhancer or promoter region of DNA adjacent to the gene and are related to basal transcription regulation, differential enhancement of transcription, development, response to intercellular signals or environment, and cell cycle control. The mechanism in controlling gene expression of transcription can be understood through the assessment of the complete sequence for the maize genome. It is possible that the maize genome encodes 4,000 or more transcription factors because it has undergone whole duplication in the past. Previously, several transcription factors of maize have been characterized. In this review article, the transcription factors were selected using Pfam database, including many family members in comparison with other family and listed as follows: ABI3/VP1, AP2/EREBP, ARF, ARID, AS2, AUX/IAA, BES1, bHLH, bZIP, C2C2-CO-like, C2C2-Dof, C2C2-GATA, C2C2-YABBY, C2H2, E2F/DP, FHA, GARP-ARR-B, GeBP, GRAS, HMG, HSF, MADS, MYB, MYB-related, NAC, PHD, and WRKY family. For analyzing motifs, each amino acid sequence has been aligned with ClustalW and the conserved sequence was shown by sequence logo. This review article will contribute to further study of molecular biological analysis and breeding using the transcription factor of maize as a strategy for selecting target gene.

키워드

참고문헌

  1. Aasland, R., T. J. Gibson, and A. F. Stewart. 1995. The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem. Sci. 20 : 56-59. https://doi.org/10.1016/S0968-0004(00)88957-4
  2. Abel, S., P. W. Oeller, and A. Theologis. 1994. Early auxininduced genes encode short-lived nuclear proteins. Proc. Natl. Acad. Sci. U. S. A. 91 : 326-330. https://doi.org/10.1073/pnas.91.1.326
  3. Abel, S., M. D. Nguyen, and A. Theologis. 1995. The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana. J. Mol. Biol. 251 : 533-549. https://doi.org/10.1006/jmbi.1995.0454
  4. Aida, M., T. Ishida, H. Fukaki, H. Fujisawa, and M. Tasaka. 1997. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9 : 841-857. https://doi.org/10.1105/tpc.9.6.841
  5. Albani, D., L. Mariconti, S. Ricagno, L. Pitto, C. Moroni, K. Helin, and R. Cella. 2000. DcE2F, a functional plant E2Flike transcriptional activator from Daucus carota. J. Biol. Chem. 275 : 19258-19267. https://doi.org/10.1074/jbc.M909390199
  6. Arguello-Astorga, G. R. and L. R. Herrera-Estrella. 1996. Ancestral multipartite units in light-responsive plant promoters have structural features correlating with specific phototransduction pathways. Plant Physiol. 112 : 1151-1166. https://doi.org/10.1104/pp.112.3.1151
  7. Armstrong, G. A., B. Weisshaar, and K. Hahlbrock. 1992. Homodimeric and heterodimeric leucine zipper proteins and nuclear factors from parsley recognize diverse promoter elements with ACGT cores. Plant Cell 4 : 525-537. https://doi.org/10.1105/tpc.4.5.525
  8. Atchley, W. R. and W. M. Fitch. 1997. A natural classification of the basic helix-loop-helix class of transcription factors. Proc. Natl. Acad. Sci. U. S. A. 94 : 5172-5176. https://doi.org/10.1073/pnas.94.10.5172
  9. Atchley, W. R., W. Terhalle, and A. Dress. 1999. Positional dependence, cliques, and predictive motifs in the bHLH protein domain. J. Mol. Evol. 48 : 501-516. https://doi.org/10.1007/PL00006494
  10. Babu, M. M., N. M. Luscombe, L. Aravind, M. Gerstein, and S. A. Teichmann. 2004. Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol. 14 : 283-291. https://doi.org/10.1016/j.sbi.2004.05.004
  11. Baker, S. S., K. S. Wilhelm, and M. F. Thomashow. 1994. The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol. Biol. 24 : 701-713. https://doi.org/10.1007/BF00029852
  12. Baler, R., G. Dahl, and R. Voellmy. 1993. Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol. Cell. Biol. 13 : 2486-2496.
  13. Baumann, K., A. De Paolis, P. Costantino, and G. Gualberti. 1999. The DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants. Plant Cell 11 : 323-334. https://doi.org/10.1105/tpc.11.3.323
  14. Bellmann, R. and W. Werr. 1992. Zmhox1a, the product of a novel maize homeobox gene, interacts with the Shrunken 26 bp feedback control element. EMBO J. 11 : 3367-3374.
  15. Berg, J. M. and Y. Shi. 1996. The galvanization of biology: a growing appreciation for the roles of zinc. Science 271 : 1081-1085. https://doi.org/10.1126/science.271.5252.1081
  16. Bevan, M., I. Bancroft, E. Bent, K. Love, H. Goodman, C. Dean, R. Bergkamp, W. Dirkse, M. Van Staveren, W. Stiekema, et al. 1998. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391 : 485-488. https://doi.org/10.1038/35140
  17. Bianchi, M. E., M. Beltrame, and G. Paonessa. 1989. Specific recognition of cruciform DNA by nuclear protein HMG1. Science 243 : 1056-1059. https://doi.org/10.1126/science.2922595
  18. Bobb, A. J., H. G. Eiben, and M. M. Bustos. 1995. PvAlf, an embryo-specific acidic transcriptional activator enhances gene expression from phaseolin and phytohemagglutinin promoters. Plant J. 8 : 331-343. https://doi.org/10.1046/j.1365-313X.1995.08030331.x
  19. Bochar, D. A., J. Savard, W. Wang, D. W. Lafleur, P. Moore, J. Cote, and R. Shiekhattar. 2000. A family of chromatin remodeling factors related to Williams syndrome transcription factor. Proc. Natl. Acad. Sci. U. S. A. 97 : 1038-1043. https://doi.org/10.1073/pnas.97.3.1038
  20. Borden, K. L. 1998. RING fingers and B-boxes: zinc-binding protein-protein interaction domains. Biochem. Cell Biol. 76 : 351-358. https://doi.org/10.1139/o98-021
  21. Bowman, J. L., J. Alvarez, D. Weigel, E. M. Meyerowitz, and D. R. Smyth. 1993. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119 : 721-743.
  22. Bowman, J. L., S. F. Baum, Y. Eshed, J. Putterill, and J. Alvarez. 1999. Molecular genetics of gynoecium development in Arabidopsis. Curr. Top. Dev. Biol. 45 : 155-205. https://doi.org/10.1016/S0070-2153(08)60316-6
  23. Braun, E. L. and E. Grotewold. 1999. Newly discovered plant c-myb-like genes rewrite the evolution of the plant myb gene family. Plant Physiol. 121 : 21-24. https://doi.org/10.1104/pp.121.1.21
  24. Bustin, M., D. A. Lehn, and D. Landsman. 1990. Structural features of the HMG chromosomal proteins and their genes. Biochim. Biophys. Acta 1049 : 231-243. https://doi.org/10.1016/0167-4781(90)90092-G
  25. Carson, C. B., T. Hattori, L. Rosenkrans, V. Vasil, I. K. Vasil, P. A. Peterson, and D. R. McCarty. 1997. The quiescent/ colorless alleles of viviparous1 show that the conserved B3 domain of VP1 is not essential for ABA-regulated gene expression in the seed. Plant J. 12 : 1231-1240. https://doi.org/10.1046/j.1365-313x.1997.12061231.x
  26. Castresana, C., I. Garcia-Luque, E. Alonso, V. S. Malik, and A. R. Cashmore. 1988. Both positive and negative regulatory elements mediate expression of a photoregulated CAB gene from Nicotiana plumbaginifolia. EMBO J. 7 : 1929-1936.
  27. Chaboute, M. E., B. Clement, M. Sekine, G. Philipps, and N. Chaubet-Gigot. 2000. Cell cycle regulation of the tobacco ribonucleotide reductase small subunit gene is mediated by E2F-like elements. Plant Cell 12 : 1987-2000. https://doi.org/10.1105/tpc.12.10.1987
  28. Chandler, J. W. and D. Bartels. 1997. Structure and function of the vp1 gene homologue from the resurrection plant Craterostigma plantagineum Hochst. Mol. Gen. Genet. 256 : 539-546. https://doi.org/10.1007/s004380050599
  29. Chen, W., G. Chao, and K. B. Singh. 1996. The promoter of a $H_2O_2$-inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP1-binding sites. Plant J. 10 : 955-966. https://doi.org/10.1046/j.1365-313X.1996.10060955.x
  30. Chuck, G., R. B. Meeley, and S. Hake. 1998. The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev. 12 : 1145-1154. https://doi.org/10.1101/gad.12.8.1145
  31. Clarke, N. D. and J. M. Berg. 1998. Zinc fingers in Caenorhabditis elegans: finding families and probing pathways. Science 282 : 2018-2022. https://doi.org/10.1126/science.282.5396.2018
  32. Coleman, J. E. 1992. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu. Rev. Biochem. 61 : 897-946. https://doi.org/10.1146/annurev.bi.61.070192.004341
  33. Curaba, J., M. Herzog, and G. Vachon. 2003. GeBP, the first member of a new gene family in Arabidopsis, encodes a nuclear protein with DNA-binding activity and is regulated by KNAT1. Plant J. 33 : 305-317. https://doi.org/10.1046/j.1365-313X.2003.01622.x
  34. Curaba, J., T. Moritz, R. Blervaque, F. Parcy, V. Raz, M. Herzog, and G. Vachon. 2004. AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiol. 136 : 3660-3669. https://doi.org/10.1104/pp.104.047266
  35. Czarnecka-Verner, E., C. X. Yuan, P. C. Fox, and W. B. Gurley. 1995. Isolation and characterization of six heat shock transcription factor cDNA clones from soybean. Plant Mol. Biol. 29 : 37-51. https://doi.org/10.1007/BF00019117
  36. Czarnecka-Verner, E., C.-X. Yuan, L. Nover, K.-D. Scharf, G. Englich, and W. Gurley. 1997. Plant heat shock transcription factors: positive and negative aspects of regulation. Acta Physiol. Plant. 19 : 529-537. https://doi.org/10.1007/s11738-997-0050-5
  37. D'Agostino, I. B., J. Deruere, and J. J. Kieber. 2000. Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol. 124 : 1706-1717. https://doi.org/10.1104/pp.124.4.1706
  38. Davies, B., M. Egea-Cortines, E. de Andrade Silva, H. Saedler, and H. Sommer. 1996. Multiple interactions amongst floral homeotic MADS box proteins. EMBO J. 15 : 4330-4343.
  39. de Pater, S., V. Greco, K. Pham, J. Memelink, and J. Kijne. 1996. Characterization of a zinc-dependent transcriptional activator from Arabidopsis. Nucleic Acids Res. 24 : 4624-4631. https://doi.org/10.1093/nar/24.23.4624
  40. Dean, C., P. Elzen, S. Tamaki, P. Dunsmuir, and J. Bedbrook. 1985. Differential expression of the eight genes of the petunia ribulose bisphosphate carboxylase small subunit multi-gene family. EMBO J. 4 : 3055-3061.
  41. Durocher, D., I. A. Taylor, D. Sarbassova, L. F. Haire, S. L. Westcott, S. P. Jackson, S. J. Smerdon, and M. B. Yaffe. 2000. The molecular basis of FHA domain:phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Mol. Cell 6 : 1169-1182. https://doi.org/10.1016/S1097-2765(00)00114-3
  42. Duval, M., T.-F. Hsieh, S. Kim, and T. Thomas. 2002. Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol. Biol. 50 : 237-248. https://doi.org/10.1023/A:1016028530943
  43. Dyson, N. 1998. The regulation of E2F by pRB-family proteins. Genes Dev. 12 : 2245-2262. https://doi.org/10.1101/gad.12.15.2245
  44. Egea-Cortines, M., H. Saedler, and H. Sommer. 1999. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18 : 5370-5379. https://doi.org/10.1093/emboj/18.19.5370
  45. Egelkrout, E. M., D. Robertson, and L. Hanley-Bowdoin. 2001. Proliferating cell nuclear antigen transcription is repressed through an E2F consensus element and activated by geminivirus infection in mature leaves. Plant Cell 13 : 1437-1452. https://doi.org/10.1105/tpc.13.6.1437
  46. Elliott, R. C., A. S. Betzner, E. Huttner, M. P. Oakes, W. Q. Tucker, D. Gerentes, P. Perez, and D. R. Smyth. 1996. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8 : 155-168. https://doi.org/10.1105/tpc.8.2.155
  47. Eulgem, T., P. J. Rushton, S. Robatzek, and I. E. Somssich. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5 : 199-206. https://doi.org/10.1016/S1360-1385(00)01600-9
  48. Eulgem, T., P. J. Rushton, E. Schmelzer, K. Hahlbrock, and I. E. Somssich. 1999. Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J. 18 : 4689-4699. https://doi.org/10.1093/emboj/18.17.4689
  49. Evans, T., M. Reitman, and G. Felsenfeld. 1988. An erythrocytespecific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. Proc. Natl. Acad. Sci. U. S. A. 85 : 5976-5980. https://doi.org/10.1073/pnas.85.16.5976
  50. Ezcurra, I., P. Wycliffe, L. Nehlin, M. Ellerstrom, and L. Rask. 2000. Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box. Plant J. 24 : 57-66. https://doi.org/10.1046/j.1365-313x.2000.00857.x
  51. Fan, H. Y., Y. Hu, M. Tudor, and H. Ma. 1997. Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J. 12 : 999-1010. https://doi.org/10.1046/j.1365-313X.1997.12050999.x
  52. Ferre-D'Amare, A. R., P. Pognonec, R. G. Roeder, and S. K. Burley. 1994. Structure and function of the b/HLH/Z domain of USF. EMBO J. 13 : 180-189.
  53. Finkelstein, R. R., M. L. Wang, T. J. Lynch, S. Rao, and H. M. Goodman. 1998. The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10 : 1043-1054.
  54. Fornara, F., G. Marziani, L. Mizzi, M. Kater, and L. Colombo. 2003. MADS-Box Genes Controlling Flower Development in Rice. Plant Biology 5 : 16-22. https://doi.org/10.1055/s-2003-37975
  55. Fu, Y. H. and G. A. Marzluf. 1990. nit-2, the major nitrogen regulatory gene of Neurospora crassa, encodes a protein with a putative zinc finger DNA-binding domain. Mol. Cell. Biol. 10 : 1056-1065.
  56. Fujimoto, S. Y., M. Ohta, A. Usui, H. Shinshi, and M. Ohme-Takagi. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12 : 393-404. https://doi.org/10.1105/tpc.12.3.393
  57. Gagliardi, D., C. Breton, A. Chaboud, P. Vergne, and C. Dumas. 1995. Expression of heat shock factor and heat shock protein 70 genes during maize pollen development. Plant Mol. Biol. 29 : 841-856. https://doi.org/10.1007/BF00041173
  58. Gan, Y., C. Liu, H. Yu, and P. Broun. 2007. Integration of cytokinin and gibberellin signalling by Arabidopsis transcription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate. Development 134 : 2073-2081. https://doi.org/10.1242/dev.005017
  59. Gaut, B. S. and J. F. Doebley. 1997. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl. Acad. Sci. U. S. A. 94 : 6809-6814. https://doi.org/10.1073/pnas.94.13.6809
  60. Gellon, G. and W. McGinnis. 1998. Shaping animal body plans in development and evolution by modulation of Hox expression patterns. BioEssays 20 : 116-125. https://doi.org/10.1002/(SICI)1521-1878(199802)20:2<116::AID-BIES4>3.0.CO;2-R
  61. Gidoni, D., P. Brosio, D. Bond-Nutter, J. Bedbrook, and P. Dunsmuir. 1989. Novel cis-acting elements in Petunia Cab gene promoters. Mol. Gen. Genet. 215 : 337-344. https://doi.org/10.1007/BF00339739
  62. Gilmartin, P. M., L. Sarokin, J. Memelink, and N. H. Chua. 1990. Molecular light switches for plant genes. Plant Cell 2 : 369-378. https://doi.org/10.1105/tpc.2.5.369
  63. Gilmour, S. J., D. G. Zarka, E. J. Stockinger, M. P. Salazar, J. M. Houghton, and M. F. Thomashow. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in coldinduced COR gene expression. Plant J. 16 : 433-442. https://doi.org/10.1046/j.1365-313x.1998.00310.x
  64. Giraudat, J., B. M. Hauge, C. Valon, J. Smalle, F. Parcy, and H. M. Goodman. 1992. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4 : 1251-1261. https://doi.org/10.1105/tpc.4.10.1251
  65. Giuliano, G., E. Pichersky, V. S. Malik, M. P. Timko, P. A. Scolnik, and A. R. Cashmore. 1988. An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc. Natl. Acad. Sci. U. S. A. 85 : 7089-7093. https://doi.org/10.1073/pnas.85.19.7089
  66. Goto, K. and E. M. Meyerowitz. 1994. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8 : 1548-1560. https://doi.org/10.1101/gad.8.13.1548
  67. Grandori, C., S. M. Cowley, L. P. James, and R. N. Eisenman. 2000. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol. 16 : 653-699. https://doi.org/10.1146/annurev.cellbio.16.1.653
  68. Grob, U. and K. Stuber. 1987. Discrimination of phytochrome dependent light inducible from non-light inducible plant genes. Prediction of a common light-responsive element (LRE) in phytochrome dependent light inducible plant genes. Nucleic Acids Res. 15 : 9957-9973. https://doi.org/10.1093/nar/15.23.9957
  69. Grotewold, E. and J. Gray. 2009. Maize Transcription Factors. In: J. Bennetzen and S. Hake, editors, Handbook of Maize. Springer New York. p. 693-713.
  70. Gu, Q., C. Ferrandiz, M. F. Yanofsky, and R. Martienssen. 1998. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125 : 1509-1517.
  71. Gualberti, G., M. Papi, L. Bellucci, I. Ricci, D. Bouchez, C. Camilleri, P. Costantino, and P. Vittorioso. 2002. Mutations in the Dof zinc finger genes DAG2 and DAG1 influence with opposite effects the germination of Arabidopsis seeds. Plant Cell 14 : 1253-1263. https://doi.org/10.1105/tpc.010491
  72. Guiltinan, M. J., W. R. Marcotte, Jr., and R. S. Quatrano. 1990. A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250 : 267-271. https://doi.org/10.1126/science.2145628
  73. Gupta, R., C. Webster, A. Walker, and J. Gray. 1997. Chromosomal location and expression of the single-copy gene encoding high-mobility-group protein HMG-I/Y in Arabidopsis thaliana. Plant Mol. Biol. 34 : 529-536. https://doi.org/10.1023/A:1005828430861
  74. Hara, K., M. Yagi, T. Kusano, and H. Sano. 2000. Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. Mol. Gen. Genet. 263 : 30-37. https://doi.org/10.1007/PL00008673
  75. Harada, J. J. 2001. Role of Arabidopsis LEAFY COTYLEDON genes in seed development. J. Plant Physiol. 158 : 405-409. https://doi.org/10.1078/0176-1617-00351
  76. Harrison, S. C. 1991. A structural taxonomy of DNA-binding domains. Nature 353 : 715-719. https://doi.org/10.1038/353715a0
  77. Hartmann, U., S. Hohmann, K. Nettesheim, E. Wisman, H. Saedler, and P. Huijser. 2000. Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J. 21 : 351-360. https://doi.org/10.1046/j.1365-313x.2000.00682.x
  78. Hattori, T., T. Terada, and S. T. Hamasuna. 1994. Sequence and functional analyses of the rice gene homologous to the maize Vp1. Plant Mol. Biol. 24 : 805-810. https://doi.org/10.1007/BF00029862
  79. Hattori, T., V. Vasil, L. Rosenkrans, L. C. Hannah, D. R. McCarty, and I. K. Vasil. 1992. The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Dev. 6 : 609-618. https://doi.org/10.1101/gad.6.4.609
  80. Hayes, T. E., P. Sengupta, and B. H. Cochran. 1988. The human c-fos serum response factor and the yeast factors GRM/PRTF have related DNA-binding specificities. Genes Dev. 2 : 1713-1722. https://doi.org/10.1101/gad.2.12b.1713
  81. Hoecker, U., I. K. Vasil, and D. R. McCarty. 1995. Integrated control of seed maturation and germination programs by activator and repressor functions of Viviparous-1 of maize. Genes Dev. 9 : 2459-2469. https://doi.org/10.1101/gad.9.20.2459
  82. Hofmann, K. and P. Bucher. 1995. The FHA domain: a putative nuclear signalling domain found in protein kinases and transcription factors. Trends Biochem. Sci. 20 : 347-349. https://doi.org/10.1016/S0968-0004(00)89072-6
  83. Honma, T. and K. Goto. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409 : 525-529. https://doi.org/10.1038/35054083
  84. Hu, J. C., E. K. O'Shea, P. S. Kim, and R. T. Sauer. 1990. Sequence requirements for coiled-coils: analysis with lambda repressor-GCN4 leucine zipper fusions. Science 250 : 1400-1403. https://doi.org/10.1126/science.2147779
  85. Hubel, A. and F. Schoffl. 1994. Arabidopsis heat shock factor: isolation and characterization of the gene and the recombinant protein. Plant Mol. Biol. 26 : 353-362. https://doi.org/10.1007/BF00039545
  86. Hurst, H. C. 1994. Transcription factors. 1: bZIP proteins. Protein Profile 1 : 123-168.
  87. Imamura, A., N. Hanaki, A. Nakamura, T. Suzuki, M. Taniguchi, T. Kiba, C. Ueguchi, T. Sugiyama, and T. Mizuno. 1999. Compilation and characterization of Arabidopsis thaliana response regulators implicated in His-Asp phosphorelay signal transduction. Plant Cell Physiol. 40 : 733-742. https://doi.org/10.1093/oxfordjournals.pcp.a029600
  88. Ishiguro, S. and K. Nakamura. 1994. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol. Gen. Genet. 244 : 563-571.
  89. Itoh, H., A. Shimada, M. Ueguchi-Tanaka, N. Kamiya, Y. Hasegawa, M. Ashikari, and M. Matsuoka. 2005. Overexpression of a GRAS protein lacking the DELLA domain confers altered gibberellin responses in rice. Plant J. 44 : 669-679. https://doi.org/10.1111/j.1365-313X.2005.02562.x
  90. Iwakawa, H., Y. Ueno, E. Semiarti, H. Onouchi, S. Kojima, H. Tsukaya, M. Hasebe, T. Soma, M. Ikezaki, C. Machida, et al. 2002. The ASYMMETRIC LEAVES2 Gene of Arabidopsis thaliana, Required for Formation of a Symmetric Flat Leaf Lamina, Encodes a Member of a Novel Family of Proteins Characterized by Cysteine Repeats and a Leucine Zipper. Plant Cell Physiol. 43 : 467-478. https://doi.org/10.1093/pcp/pcf077
  91. Jack, T., L. L. Brockman, and E. M. Meyerowitz. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68 : 683-697. https://doi.org/10.1016/0092-8674(92)90144-2
  92. Jasinski, S., P. Piazza, J. Craft, A. Hay, L. Woolley, I. Rieu, A. Phillips, P. Hedden, and M. Tsiantis. 2005. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr. Biol. 15 : 1560-1565. https://doi.org/10.1016/j.cub.2005.07.023
  93. Jin, H. and C. Martin. 1999. Multifunctionality and diversity within the plant MYB-gene family. Plant Mol. Biol. 41 : 577-585. https://doi.org/10.1023/A:1006319732410
  94. Jofuku, K. D., B. G. den Boer, M. Van Montagu, and J. K. Okamuro. 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6 : 1211-1225. https://doi.org/10.1105/tpc.6.9.1211
  95. Kagaya, Y., K. Ohmiya, and T. Hattori. 1999. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res. 27 : 470-478. https://doi.org/10.1093/nar/27.2.470
  96. Katagiri, F., E. Lam, and N. H. Chua. 1989. Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature 340 : 727-730. https://doi.org/10.1038/340727a0
  97. Kater, M. M., J. Franken, K. J. Carney, L. Colombo, and G. C. Angenent. 2001. Sex determination in the monoecious species cucumber is confined to specific floral whorls. Plant Cell 13 : 481-493. https://doi.org/10.1105/tpc.13.3.481
  98. Kim, J., K. Harter, and A. Theologis. 1997. Protein-protein interactions among the Aux/IAA proteins. Proc. Natl. Acad. Sci. U. S. A. 94 : 11786-11791. https://doi.org/10.1073/pnas.94.22.11786
  99. Kim, S., Z. Zhang, S. Upchurch, N. Isern, and Y. Chen. 2004. Structure and DNA-binding Sites of the SWI1 AT-rich Interaction Domain (ARID) Suggest Determinants for Sequencespecific DNA Recognition. J. Biol. Chem. 279 : 16670-16676. https://doi.org/10.1074/jbc.M312115200
  100. Kirik, V. and H. Baumlein. 1996. A novel leaf-specific mybrelated protein with a single binding repeat. Gene 183 : 109-113. https://doi.org/10.1016/S0378-1119(96)00521-5
  101. Kisu, Y., Y. Harada, M. Goto, and M. Esaka. 1997. Cloning of the pumpkin ascorbate oxidase gene and analysis of a cis-acting region involved in induction by auxin. Plant Cell Physiol. 38 : 631-637. https://doi.org/10.1093/oxfordjournals.pcp.a029214
  102. Kisu, Y., T. Ono, N. Shimofurutani, M. Suzuki, and M. Esaka. 1998. Characterization and expression of a new class of zinc finger protein that binds to silencer region of ascorbate oxidase gene. Plant Cell Physiol. 39 : 1054-1064. https://doi.org/10.1093/oxfordjournals.pcp.a029302
  103. Klucher, K. M., H. Chow, L. Reiser, and R. L. Fischer. 1996. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8 : 137-153. https://doi.org/10.1105/tpc.8.2.137
  104. Kortschak, R. D., P. W. Tucker, and R. Saint. 2000. ARID proteins come in from the desert. Trends Biochem. Sci. 25 : 294-299. https://doi.org/10.1016/S0968-0004(00)01597-8
  105. Kudla, B., M. X. Caddick, T. Langdon, N. M. Martinez-Rossi, C. F. Bennett, S. Sibley, R. W. Davies, and H. N. Arst, Jr. 1990. The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J. 9 : 1355-1364.
  106. Landschulz, W. H., P. F. Johnson, and S. L. McKnight. 1988. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240 : 1759-1764. https://doi.org/10.1126/science.3289117
  107. Laudet, V., C. Hanni, J. Coll, F. Catzeflis, and D. Stehelin. 1992. Evolution of the nuclear receptor gene superfamily. EMBO J. 11 : 1003-1013.
  108. Lavia, P. and P. Jansen-Durr. 1999. E2F target genes and cell-cycle checkpoint control. BioEssays 21 : 221-230. https://doi.org/10.1002/(SICI)1521-1878(199903)21:3<221::AID-BIES6>3.0.CO;2-J
  109. Ledent, V. and M. Vervoort. 2001. The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res. 11 : 754-770. https://doi.org/10.1101/gr.177001
  110. Lee, M.-H., B. Kim, S.-K. Song, J.-O. Heo, N.-I. Yu, S. Lee, M. Kim, D. Kim, S. Sohn, C. Lim, et al. 2008. Large-scale analysis of the GRAS gene family in Arabidopsis thaliana. Plant Mol. Biol. 67 : 659-670. https://doi.org/10.1007/s11103-008-9345-1
  111. Li, G., K. J. Bishop, M. B. Chandrasekharan, and T. C. Hall. 1999a. ${\beta}$-Phaseolin gene activation is a two-step process: PvALF- facilitated chromatin modification followed by abscisic acid-mediated gene activation. Proc. Natl. Acad. Sci. U. S. A. 96 : 7104-7109. https://doi.org/10.1073/pnas.96.12.7104
  112. Li, G., M. B. Chandrasekharan, A. P. Wolffe, and T. C. Hall. 2001. Chromatin structure and phaseolin gene regulation. Plant Mol. Biol. 46 : 121-129. https://doi.org/10.1023/A:1010693703421
  113. Li, J., G. P. Smith, and J. C. Walker. 1999b. Kinase interaction domain of kinase-associated protein phosphatase, a phosphoproteinbinding domain. Proc. Natl. Acad. Sci. U. S. A. 96 : 7821-7826. https://doi.org/10.1073/pnas.96.14.7821
  114. Li, J., G. I. Lee, S. R. Van Doren, and J. C. Walker. 2000. The FHA domain mediates phosphoprotein interactions. J. Cell Sci. 113 Pt 23 : 4143-4149.
  115. Liao, H., C. Yuan, M. I. Su, S. Yongkiettrakul, D. Qin, H. Li, I. J. Byeon, D. Pei, and M. D. Tsai. 2000. Structure of the FHA1 domain of yeast Rad53 and identification of binding sites for both FHA1 and its target protein Rad9. J. Mol. Biol. 304 : 941-951. https://doi.org/10.1006/jmbi.2000.4291
  116. Liljegren, S. J., G. S. Ditta, Y. Eshed, B. Savidge, J. L. Bowman, and M. F. Yanofsky. 2000. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404 : 766-770. https://doi.org/10.1038/35008089
  117. Littlewood, T. D. and G. I. Evan. 1998. Helix-loop-helix transcription factors 3rd ed. Oxford University Press, Oxford [England].
  118. Liu, Q., M. Kasuga, Y. Sakuma, H. Abe, S. Miura, K. Yamaguchi-Shinozaki, and K. Shinozaki. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperatureresponsive gene expression, respectively, in Arabidopsis. Plant Cell 10 : 1391-1406. https://doi.org/10.1105/tpc.10.8.1391
  119. Loewith, R., M. Meijer, S. P. Lees-Miller, K. Riabowol, and D. Young. 2000. Three yeast proteins related to the human candidate tumor suppressor p33(ING1) are associated with histone acetyltransferase activities. Mol. Cell. Biol. 20 : 3807-3816. https://doi.org/10.1128/MCB.20.11.3807-3816.2000
  120. Lund, T., J. Holtlund, M. Fredriksen, and S. G. Laland. 1983. On the presence of two new high mobility group-like proteins in HeLa S3 cells. FEBS Lett. 152 : 163-167. https://doi.org/10.1016/0014-5793(83)80370-6
  121. Ma, P. C., M. A. Rould, H. Weintraub, and C. O. Pabo. 1994. Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation. Cell 77 : 451-459. https://doi.org/10.1016/0092-8674(94)90159-7
  122. Magyar, Z., A. Atanassova, L. De Veylder, S. Rombauts, and D. Inze. 2000. Characterization of two distinct DP-related genes from Arabidopsis thaliana. FEBS Lett. 486 : 79-87. https://doi.org/10.1016/S0014-5793(00)02238-9
  123. Mandel, M. A., C. Gustafson-Brown, B. Savidge, and M. F. Yanofsky. 1992. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360 : 273-277. https://doi.org/10.1038/360273a0
  124. Manzara, T. and W. Gruissem. 1988. Organization and expression of the genes encoding ribulose-1,5-bisphosphate carboxylase in higher plants. Photosynth. Res. 16 : 117-139. https://doi.org/10.1007/BF00039489
  125. Massari, M. E. and C. Murre. 2000. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 20 : 429-440. https://doi.org/10.1128/MCB.20.2.429-440.2000
  126. McCarty, D. R., T. Hattori, C. B. Carson, V. Vasil, M. Lazar, and I. K. Vasil. 1991. The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66 : 895-905. https://doi.org/10.1016/0092-8674(91)90436-3
  127. McKnight, S. L. 1991. Molecular zippers in gene regulation. Sci. Am. 264 : 54-64.
  128. Mena, M., J. Vicente-Carbajosa, R. J. Schmidt, and P. Carbonero. 1998. An endosperm-specific DOF protein from barley, highly conserved in wheat, binds to and activates transcription from the prolamin-box of a native B-hordein promoter in barley endosperm. Plant J. 16 : 53-62. https://doi.org/10.1046/j.1365-313x.1998.00275.x
  129. Mena, M., F. J. Cejudo, I. Isabel-Lamoneda, and P. Carbonero. 2002. A role for the DOF transcription factor BPBF in the regulation of gibberellin-responsive genes in barley aleurone. Plant Physiol. 130 : 111-119. https://doi.org/10.1104/pp.005561
  130. Mewes, H. W., K. Albermann, M. Bahr, D. Frishman, A. Gleissner, J. Hani, K. Heumann, K. Kleine, A. Maierl, S. G. Oliver, et al. 1997. Overview of the yeast genome. Nature 387 : 7-65.
  131. Michaels, S. D. and R. M. Amasino. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11 : 949-956. https://doi.org/10.1105/tpc.11.5.949
  132. Michaels, S. D., G. Ditta, C. Gustafson-Brown, S. Pelaz, M. Yanofsky, and R. M. Amasino. 2003. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J. 33 : 867-874. https://doi.org/10.1046/j.1365-313X.2003.01671.x
  133. Moose, S. P. and P. H. Sisco. 1996. Glossy15, an APETALA2- like gene from maize that regulates leaf epidermal cell identity. Genes Dev. 10 : 3018-3027. https://doi.org/10.1101/gad.10.23.3018
  134. Morgan, K. E., T. I. Zarembinski, A. Theologis, and S. Abel. 1999. Biochemical characterization of recombinant polypeptides corresponding to the predicted ${\beta}{\alpha}{\alpha}$ fold in Aux/IAA proteins. FEBS Lett. 454 : 283-287. https://doi.org/10.1016/S0014-5793(99)00819-4
  135. Mouradov, A., F. Cremer, and G. Coupland. 2002. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14 Suppl : S111-130.
  136. Munster, T., J. Pahnke, A. Di Rosa, J. T. Kim, W. Martin, H. Saedler, and G. Theissen. 1997. Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc. Natl. Acad. Sci. U. S. A. 94 : 2415-2420. https://doi.org/10.1073/pnas.94.6.2415
  137. Murre, C., P. S. McCaw, and D. Baltimore. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56 : 777-783. https://doi.org/10.1016/0092-8674(89)90682-X
  138. Nagai, N., A. Nakai, and K. Nagata. 1995. Quercetin suppresses heat shock response by down regulation of HSF1. Biochem. Biophys. Res. Commun. 208 : 1099-1105. https://doi.org/10.1006/bbrc.1995.1447
  139. Nair, S. K. and S. K. Burley. 2000. Recognizing DNA in the library. Nature 404 : 715, 717-718.
  140. Nakai, A. and R. I. Morimoto. 1993. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol. Cell. Biol. 13 : 1983-1997.
  141. Nakai, A., M. Tanabe, Y. Kawazoe, J. Inazawa, R. I. Morimoto, and K. Nagata. 1997. HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol. Cell. Biol. 17 : 469-481.
  142. Nambara, E., P. McCourt, and S. Naito. 1995. A regulatory role for the ABI3 gene in the establishment of embryo maturation in Arabidopsis thaliana. Development 121 : 629-636.
  143. Nambara, E., M. Suzuki, S. Abrams, D. R. McCarty, Y. Kamiya, and P. McCourt. 2002. A Screen for Genes That Function in Abscisic Acid Signaling in Arabidopsis thaliana. Genetics 161 : 1247-1255.
  144. Nambara, E., R. Hayama, Y. Tsuchiya, M. Nishimura, H. Kawaide, Y. Kamiya, and S. Naito. 2000. The Role of ABI3 and FUS3 Loci in Arabidopsis thaliana on Phase Transition from Late Embryo Development to Germination. Dev. Biol. 220 : 412-423. https://doi.org/10.1006/dbio.2000.9632
  145. Nesi, N., I. Debeaujon, C. Jond, A. J. Stewart, G. I. Jenkins, M. Caboche, and L. Lepiniec. 2002. The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14 : 2463-2479. https://doi.org/10.1105/tpc.004127
  146. Nole-Wilson, S. and B. A. Krizek. 2000. DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTA. Nucleic Acids Res. 28 : 4076-4082. https://doi.org/10.1093/nar/28.21.4076
  147. Nover, L. and K. D. Scharf. 1997. Heat stress proteins and transcription factors. Cell. Mol. Life Sci. 53 : 80-103. https://doi.org/10.1007/PL00000583
  148. Nover, L., K. D. Scharf, D. Gagliardi, P. Vergne, E. Czarnecka- Verner, and W. B. Gurley. 1996. The Hsf world: classification and properties of plant heat stress transcription factors. Cell Stress Chaperones 1 : 215-223. https://doi.org/10.1379/1466-1268(1996)001<0215:THWCAP>2.3.CO;2
  149. O'Shea, E. K., R. Rutkowski, and P. S. Kim. 1989. Evidence that the leucine zipper is a coiled coil. Science 243 : 538-542. https://doi.org/10.1126/science.2911757
  150. O'Shea, E. K., J. D. Klemm, P. S. Kim, and T. Alber. 1991. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254 : 539-544. https://doi.org/10.1126/science.1948029
  151. Oeda, K., J. Salinas, and N. H. Chua. 1991. A tobacco bZip transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes. EMBO J. 10 : 1793-1802.
  152. Okamuro, J. K., B. Caster, R. Villarroel, M. Van Montagu, and K. D. Jofuku. 1997. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 94 : 7076-7081. https://doi.org/10.1073/pnas.94.13.7076
  153. Oppenheimer, D. G., P. L. Herman, S. Sivakumaran, J. Esch, and M. D. Marks. 1991. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell 67 : 483-493. https://doi.org/10.1016/0092-8674(91)90523-2
  154. Ouellet, F., P. J. Overvoorde, and A. Theologis. 2001. IAA17/AXR3: Biochemical Insight into an Auxin Mutant Phenotype. Plant Cell 13 : 829-841. https://doi.org/10.1105/tpc.13.4.829
  155. Palaniswamy, S. K., S. James, H. Sun, R. S. Lamb, R. V. Davuluri, and E. Grotewold. 2006. AGRIS and AtRegNet. A Platform to Link cis-Regulatory Elements and Transcription Factors into Regulatory Networks. Plant Physiol. 140 : 818-829. https://doi.org/10.1104/pp.105.072280
  156. Papi, M., S. Sabatini, D. Bouchez, C. Camilleri, P. Costantino, and P. Vittorioso. 2000. Identification and disruption of an Arabidopsis zinc finger gene controlling seed germination. Genes Dev. 14 : 28-33.
  157. Papi, M., S. Sabatini, M. M. Altamura, L. Hennig, E. Schafer, P. Costantino, and P. Vittorioso. 2002. Inactivation of the phloem-specific Dof zinc finger gene DAG1 affects response to light and integrity of the testa of Arabidopsis seeds. Plant Physiol. 128 : 411-417. https://doi.org/10.1104/pp.010488
  158. Pelaz, S., G. S. Ditta, E. Baumann, E. Wisman, and M. F. Yanofsky. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405 : 200-203. https://doi.org/10.1038/35012103
  159. Peng, J., P. Carol, D. E. Richards, K. E. King, R. J. Cowling, G. P. Murphy, and N. P. Harberd. 1997. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev. 11 : 3194-3205. https://doi.org/10.1101/gad.11.23.3194
  160. Perazza, D., G. Vachon, and M. Herzog. 1998. Gibberellins promote trichome formation by Up-regulating GLABROUS1 in Arabidopsis. Plant Physiol. 117 : 375-383. https://doi.org/10.1104/pp.117.2.375
  161. Plesch, G., T. Ehrhardt, and B. Mueller-Roeber. 2001. Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell-specific gene expression. Plant J. 28 : 455-464.
  162. Purugganan, M. D., S. D. Rounsley, R. J. Schmidt, and M. F. Yanofsky. 1995. Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140 : 345-356.
  163. Putterill, J., F. Robson, K. Lee, R. Simon, and G. Coupland. 1995. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80 : 847-857. https://doi.org/10.1016/0092-8674(95)90288-0
  164. Pysh, L. D., J. W. Wysocka-Diller, C. Camilleri, D. Bouchez, and P. N. Benfey. 1999. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J. 18 : 111-119. https://doi.org/10.1046/j.1365-313X.1999.00431.x
  165. Ramirez-Parra, E., Q. Xie, M. B. Boniotti, and C. Gutierrez. 1999. The cloning of plant E2F, a retinoblastoma-binding protein, reveals unique and conserved features with animal G1/S regulators. Nucleic Acids Res. 27 : 3527-3533. https://doi.org/10.1093/nar/27.17.3527
  166. Ramirez-Parra, E. and C. Gutierrez. 2000. Characterization of wheat DP, a heterodimerization partner of the plant E2F transcription factor which stimulates E2F-DNA binding. FEBS Lett. 486 : 73-78. https://doi.org/10.1016/S0014-5793(00)02239-0
  167. Rasmussen, R., D. Benvegnu, E. K. O'Shea, P. S. Kim, and T. Alber. 1991. X-ray scattering indicates that the leucine zipper is a coiled coil. Proc. Natl. Acad. Sci. U. S. A. 88 : 561-564. https://doi.org/10.1073/pnas.88.2.561
  168. Ratcliffe, O. J., G. C. Nadzan, T. L. Reuber, and J. L. Riechmann. 2001. Regulation of flowering in Arabidopsis by an FLC homologue. Plant Physiol. 126 : 122-132. https://doi.org/10.1104/pp.126.1.122
  169. Reed, J. W. 2001. Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci. 6 : 420-425. https://doi.org/10.1016/S1360-1385(01)02042-8
  170. Reeves, R. and M. S. Nissen. 1990. The A.T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J. Biol. Chem. 265 : 8573-8582.
  171. Riano-Pachon, D. M., S. Ruzicic, I. Dreyer, and B. Mueller- Roeber. 2007. PlnTFDB: an integrative plant transcription factor database. BMC Bioinformatics 8 : 42. https://doi.org/10.1186/1471-2105-8-42
  172. Riechmann, J. L. and E. M. Meyerowitz. 1997. MADS domain proteins in plant development. Biol. Chem. 378 : 1079-1101.
  173. Riechmann, J. L. and E. M. Meyerowitz. 1998. The AP2/EREBP family of plant transcription factors. Biol. Chem. 379 : 633-654.
  174. Riechmann, J. L. and O. J. Ratcliffe. 2000. A genomic perspective on plant transcription factors. Curr. Opin. Plant Biol. 3 : 423-434. https://doi.org/10.1016/S1369-5266(00)00107-2
  175. Riechmann, J. L., M. Wang, and E. M. Meyerowitz. 1996. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res. 24 : 3134-3141. https://doi.org/10.1093/nar/24.16.3134
  176. Riechmann, J. L., J. Heard, G. Martin, L. Reuber, C. Jiang, J. Keddie, L. Adam, O. Pineda, O. J. Ratcliffe, R. R. Samaha, et al. 2000. Arabidopsis transcription factors: genomewide comparative analysis among eukaryotes. Science 290 : 2105-2110. https://doi.org/10.1126/science.290.5499.2105
  177. Robinson, K. A., J. I. Koepke, M. Kharodawala, and J. M. Lopes. 2000. A network of yeast basic helix-loop-helix interactions. Nucleic Acids Res. 28 : 4460-4466. https://doi.org/10.1093/nar/28.22.4460
  178. Robson, F., M. M. Costa, S. R. Hepworth, I. Vizir, M. Pineiro, P. H. Reeves, J. Putterill, and G. Coupland. 2001. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J. 28 : 619-631.
  179. Rosinski, J. A. and W. R. Atchley. 1998. Molecular evolution of the Myb family of transcription factors: evidence for polyphyletic origin. J. Mol. Evol. 46 : 74-83. https://doi.org/10.1007/PL00006285
  180. Rushton, P., H. Macdonald, A. Huttly, C. Lazarus, and R. Hooley. 1995. Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of ${\alpha}$-Amy2 genes. Plant Mol. Biol. 29 : 691-702. https://doi.org/10.1007/BF00041160
  181. Rushton, P. J., J. T. Torres, M. Parniske, P. Wernert, K. Hahlbrock, and I. E. Somssich. 1996. Interaction of elicitorinduced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J. 15 : 5690-5700.
  182. Saha, V., T. Chaplin, A. Gregorini, P. Ayton, and B. D. Young. 1995. The leukemia-associated-protein (LAP) domain, a cysteine-rich motif, is present in a wide range of proteins, including MLL, AF10, and MLLT6 proteins. Proc. Natl. Acad. Sci. U. S. A. 92 : 9737-9741. https://doi.org/10.1073/pnas.92.21.9737
  183. Sakai, H., T. Aoyama, and A. Oka. 2000. Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J. 24 : 703-711. https://doi.org/10.1046/j.1365-313x.2000.00909.x
  184. Sakai, H., T. Honma, T. Aoyama, S. Sato, T. Kato, S. Tabata, and A. Oka. 2001. ARR1, a Transcription Factor for Genes Immediately Responsive to Cytokinins. Science 294 : 1519-1521. https://doi.org/10.1126/science.1065201
  185. Samach, A., H. Onouchi, S. E. Gold, G. S. Ditta, Z. Schwarz-Sommer, M. F. Yanofsky, and G. Coupland. 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288 : 1613-1616. https://doi.org/10.1126/science.288.5471.1613
  186. Sarge, K. D., S. P. Murphy, and R. I. Morimoto. 1993. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell. Biol. 13 : 1392-1407.
  187. Scharf, K. D., S. Rose, W. Zott, F. Schoffl, and L. Nover. 1990. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNAbinding domain of the yeast HSF. EMBO J. 9 : 4495-4501.
  188. Schindler, U., H. Beckmann, and A. R. Cashmore. 1992. TGA1 and G-box binding factors: two distinct classes of Arabidopsis leucine zipper proteins compete for the G-box-like element TGACGTGG. Plant Cell 4 : 1309-1319. https://doi.org/10.1105/tpc.4.10.1309
  189. Schindler, U., H. Beckmann, and A. R. Cashmore. 1993. HAT3.1, a novel Arabidopsis homeodomain protein containing a conserved cysteine-rich region. Plant J. 4 : 137-150. https://doi.org/10.1046/j.1365-313X.1993.04010137.x
  190. Schumacher, K., T. Schmitt, M. Rossberg, G. Schmitz, and K. Theres. 1999. The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc. Natl. Acad. Sci. U. S. A. 96 : 290-295. https://doi.org/10.1073/pnas.96.1.290
  191. Scortecci, K. C., S. D. Michaels, and R. M. Amasino. 2001. Identification of a MADS-box gene, FLOWERING LOCUS M, that represses flowering. Plant J. 26 : 229-236. https://doi.org/10.1046/j.1365-313x.2001.01024.x
  192. Sekine, M., M. Ito, K. Uemukai, Y. Maeda, H. Nakagami, and A. Shinmyo. 1999. Isolation and characterization of the E2Flike gene in plants. FEBS Lett. 460 : 117-122. https://doi.org/10.1016/S0014-5793(99)01296-X
  193. Shimizu, T., A. Toumoto, K. Ihara, M. Shimizu, Y. Kyogoku, N. Ogawa, Y. Oshima, and T. Hakoshima. 1997. Crystal structure of PHO4 bHLH domain-DNA complex: flanking base recognition. EMBO J. 16 : 4689-4697. https://doi.org/10.1093/emboj/16.15.4689
  194. Shiota, H., R. Satoh, K.-i. Watabe, H. Harada, and H. Kamada. 1998. C-ABI3, the Carrot Homologue of the Arabidopsis ABI3, is Expressed during Both Zygotic and Somatic Embryogenesis and Functions in the Regulation of Embryo-Specific ABA-Inducible Genes. Plant Cell Physiol. 39 : 1184-1193. https://doi.org/10.1093/oxfordjournals.pcp.a029319
  195. Siegfried, K. R., Y. Eshed, S. F. Baum, D. Otsuga, G. N. Drews, and J. L. Bowman. 1999. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126 : 4117-4128.
  196. Simpson, G. G. and C. Dean. 2002. Arabidopsis, the Rosetta stone of flowering time? Science 296 : 285-289. https://doi.org/10.1126/science.296.5566.285
  197. Singh, K., E. S. Dennis, J. G. Ellis, D. J. Llewellyn, J. G. Tokuhisa, J. A. Wahleithner, and W. J. Peacock. 1990. OCSBF-1, a maize ocs enhancer binding factor: isolation and expression during development. Plant Cell 2 : 891-903. https://doi.org/10.1105/tpc.2.9.891
  198. Sistonen, L., K. D. Sarge, and R. I. Morimoto. 1994. Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Mol. Cell. Biol. 14 : 2087-2099.
  199. Sistonen, L., K. D. Sarge, B. Phillips, K. Abravaya, and R. I. Morimoto. 1992. Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol. Cell. Biol. 12 : 4104-4111.
  200. Stockinger, E. J., S. J. Gilmour, and M. F. Thomashow. 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. U. S. A. 94 : 1035-1040. https://doi.org/10.1073/pnas.94.3.1035
  201. Stone, J. M., M. A. Collinge, R. D. Smith, M. A. Horn, and J. C. Walker. 1994. Interaction of a protein phosphatase with an Arabidopsis serine-threonine receptor kinase. Science 266 : 793-795. https://doi.org/10.1126/science.7973632
  202. Stracke, R., M. Werber, and B. Weisshaar. 2001. The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol. 4 : 447-456. https://doi.org/10.1016/S1369-5266(00)00199-0
  203. Strauss, F. and A. Varshavsky. 1984. A protein binds to a satellite DNA repeat at three specific sites that would be brought into mutual proximity by DNA folding in the nucleosome. Cell 37 : 889-901. https://doi.org/10.1016/0092-8674(84)90424-0
  204. Strayer, C., T. Oyama, T. F. Schultz, R. Raman, D. E. Somers, P. Mas, S. Panda, J. A. Kreps, and S. A. Kay. 2000. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289 : 768-771. https://doi.org/10.1126/science.289.5480.768
  205. Suarez-Lopez, P., K. Wheatley, F. Robson, H. Onouchi, F. Valverde, and G. Coupland. 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410 : 1116-1120. https://doi.org/10.1038/35074138
  206. Suzuki, M., C. Y. Kao, and D. R. McCarty. 1997. The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell 9 : 799-807. https://doi.org/10.1105/tpc.9.5.799
  207. Suzuki, M., M. G. Ketterling, Q.-B. Li, and D. R. McCarty. 2003. Viviparous1 Alters Global Gene Expression Patterns through Regulation of Abscisic Acid Signaling. Plant Physiol. 132 : 1664-1677. https://doi.org/10.1104/pp.103.022475
  208. Tabata, T., T. Nakayama, K. Mikami, and M. Iwabuchi. 1991. HBP-1a and HBP-1b: leucine zipper-type transcription factors of wheat. EMBO J. 10 : 1459-1467.
  209. Tabata, T., H. Takase, S. Takayama, K. Mikami, A. Nakatsuka, T. Kawata, T. Nakayama, and M. Iwabuchi. 1989. A protein that binds to a cis-acting element of wheat histone genes has a leucine zipper motif. Science 245 : 965-967. https://doi.org/10.1126/science.2772648
  210. Takatsuji, H. 1999. Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science. Plant Mol. Biol. 39 : 1073-1078. https://doi.org/10.1023/A:1006184519697
  211. Tanabe, M., A. Nakai, Y. Kawazoe, and K. Nagata. 1997. Different thresholds in the responses of two heat shock transcription factors, HSF1 and HSF3. J. Biol. Chem. 272 : 15389-15395. https://doi.org/10.1074/jbc.272.24.15389
  212. Theissen, G., J. T. Kim, and H. Saedler. 1996. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43 : 484-516. https://doi.org/10.1007/BF02337521
  213. Tian, C., P. Wan, S. Sun, J. Li, and M. Chen. 2004. Genome-Wide Analysis of the GRAS Gene Family in Rice and Arabidopsis. Plant Mol. Biol. 54 : 519-532. https://doi.org/10.1023/B:PLAN.0000038256.89809.57
  214. Tong, H., Y. Jin, W. Liu, F. Li, J. Fang, Y. Yin, Q. Qian, L. Zhu, and C. Chu. 2009. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J. 58 : 803-816. https://doi.org/10.1111/j.1365-313X.2009.03825.x
  215. Truong, H. N., M. Caboche, and F. Daniel-Vedele. 1997. Sequence and characterization of two Arabidopsis thaliana cDNAs isolated by functional complementation of a yeast gln3 gdh1 mutant. FEBS Lett. 410 : 213-218. https://doi.org/10.1016/S0014-5793(97)00590-5
  216. Ueda, T., W. Waverczak, K. Ward, N. Sher, M. Ketudat, R. J. Schmidt, and J. Messing. 1992. Mutations of the 22- and 27-kD zein promoters affect transactivation by the Opaque-2 protein. Plant Cell 4 : 701-709. https://doi.org/10.1105/tpc.4.6.701
  217. Ulmasov, T., G. Hagen, and T. J. Guilfoyle. 1997a. ARF1, a transcription factor that binds to auxin response elements. Science 276 : 1865-1868. https://doi.org/10.1126/science.276.5320.1865
  218. Ulmasov, T., G. Hagen, and T. J. Guilfoyle. 1999. Activation and repression of transcription by auxin-response factors. Proc. Natl. Acad. Sci. U. S. A. 96 : 5844-5849. https://doi.org/10.1073/pnas.96.10.5844
  219. Ulmasov, T., J. Murfett, G. Hagen, and T. J. Guilfoyle. 1997b. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9 : 1963-1971. https://doi.org/10.1105/tpc.9.11.1963
  220. Vicente-Carbajosa, J., S. P. Moose, R. L. Parsons, and R. J. Schmidt. 1997. A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc. Natl. Acad. Sci. U. S. A. 94 : 7685-7690. https://doi.org/10.1073/pnas.94.14.7685
  221. Vinson, C. R., P. B. Sigler, and S. L. McKnight. 1989. Scissorsgrip model for DNA recognition by a family of leucine zipper proteins. Science 246 : 911-916. https://doi.org/10.1126/science.2683088
  222. Washio, K. 2001. Identification of Dof proteins with implication in the gibberellin-regulated expression of a peptidase gene following the germination of rice grains. Biochim. Biophys. Acta 1520 : 54-62. https://doi.org/10.1016/S0167-4781(01)00251-2
  223. Weigel, D. 1995. The APETALA2 domain is related to a novel type of DNA binding domain. Plant Cell 7 : 388-389. https://doi.org/10.1105/tpc.7.4.388
  224. Weisbrod, S., M. Groudine, and H. Weintraub. 1980. Interaction of HMG 14 and 17 with actively transcribed genes. Cell 19 : 289-301. https://doi.org/10.1016/0092-8674(80)90410-9
  225. Weisshaar, B., G. A. Armstrong, A. Block, O. da Costa e Silva, and K. Hahlbrock. 1991. Light-inducible and constitutively expressed DNA-binding proteins recognizing a plant promoter element with functional relevance in light responsiveness. EMBO J. 10 : 1777-1786.
  226. Wilson, K., D. Long, J. Swinburne, and G. Coupland. 1996. A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell 8 : 659-671. https://doi.org/10.1105/tpc.8.4.659
  227. Xie, Q., G. Frugis, D. Colgan, and N. H. Chua. 2000. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 14 : 3024-3036. https://doi.org/10.1101/gad.852200
  228. Xie, Q., A. P. Sanz-Burgos, H. Guo, J. A. Garcia, and C. Gutierrez. 1999. GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol. Biol. 39 : 647-656. https://doi.org/10.1023/A:1006138221874
  229. Yanagisawa, S. 1995. A novel DNA-binding domain that may form a single zinc finger motif. Nucleic Acids Res. 23 : 3403-3410. https://doi.org/10.1093/nar/23.17.3403
  230. Yanagisawa, S. 1996. A novel multigene family that the gene for a maize DNA-binding protein, MNB1a belongs to: isolation of genomic clones from this family and some aspects of its molecular evolution. Biochem. Mol. Biol. Int. 38 : 665-673.
  231. Yanagisawa, S. and J. Sheen. 1998. Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell 10 : 75-89. https://doi.org/10.1105/tpc.10.1.75
  232. Yanagisawa, S. and R. J. Schmidt. 1999. Diversity and similarity among recognition sequences of Dof transcription factors. Plant J. 17 : 209-214. https://doi.org/10.1046/j.1365-313X.1999.00363.x
  233. Yanai, O., E. Shani, K. Dolezal, P. Tarkowski, R. Sablowski, G. Sandberg, A. Samach, and N. Ori. 2005. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr. Biol. 15 : 1566-1571. https://doi.org/10.1016/j.cub.2005.07.060
  234. Yanofsky, M. F., H. Ma, J. L. Bowman, G. N. Drews, K. A. Feldmann, and E. M. Meyerowitz. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346 : 35-39. https://doi.org/10.1038/346035a0
  235. Yin, Y., D. Vafeados, Y. Tao, S. Yoshida, T. Asami, and J. Chory. 2005. A New Class of Transcription Factors Mediates Brassinosteroid-Regulated Gene Expression in Arabidopsis. Cell 120 : 249-259. https://doi.org/10.1016/j.cell.2004.11.044
  236. Yu, E. Y., S. E. Kim, J. H. Kim, J. H. Ko, M. H. Cho, and I. K. Chung. 2000. Sequence-specific DNA recognition by the Myb-like domain of plant telomeric protein RTBP1. J. Biol. Chem. 275 : 24208-24214. https://doi.org/10.1074/jbc.M003250200
  237. Yu, H. and M. Gerstein. 2006. Genomic analysis of the hierarchical structure of regulatory networks. Proc. Natl. Acad. Sci. U. S. A. 103 : 14724-14731. https://doi.org/10.1073/pnas.0508637103
  238. Zhou, J., X. Tang, and G. B. Martin. 1997. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J. 16 : 3207-3218. https://doi.org/10.1093/emboj/16.11.3207

피인용 문헌

  1. Effect of In Vitro Antioxidant Properties and Extract of Corn Husk on Serum Lipids in Mice vol.25, pp.2, 2015, https://doi.org/10.17495/easdl.2015.4.25.2.261
  2. CO2 농도 상승 효과에 의한 고추 세균점무늬병 발병 양상 분석 vol.46, pp.1, 2018, https://doi.org/10.4014/mbl.1708.08006