DOI QR코드

DOI QR Code

Peptide Profiling and Selection of Specific-Expressed Peptides in Hypoglycemic Sorghum Seed using SELDI-TOF MS

SELDI-TOF MS를 활용한 혈당강하 수수 종자의 펩타이드 프로파일링 및 특이 발현 펩타이드 선발

  • Park, Sei Joon (Institute of Ecological Phytochemistry, Hankyong National University) ;
  • Hwang, Su Min (Department of Plant Life and Environmental Science, Hankyong National University) ;
  • Park, Jun Young (Institute of Ecological Phytochemistry, Hankyong National University) ;
  • Ko, Jee-Yeon (Department of Functional Crop, NICS, RDA) ;
  • Kim, Tae Wan (Institute of Ecological Phytochemistry, Hankyong National University)
  • 박세준 (국립한경대학교 식물생태화학연구소) ;
  • 황수민 (국립한경대학교 식물생명환경과학과) ;
  • 박준영 (국립한경대학교 식물생태화학연구소) ;
  • 고지연 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 김태완 (국립한경대학교 식물생태화학연구소)
  • Received : 2014.01.16
  • Accepted : 2014.02.26
  • Published : 2014.09.30

Abstract

Sorghum seed is traditionally used as secondary food sources in addition to rice in Korea. While the hypoglycemia regulating phytochemicals have been found in sorghum seed, peptides related with hypoglycemia never been studied before. To obtain the peptide characteristics and the specifically high-expressed peptides in hypoglycemic sorghum seed, peptide profiles of seven hypoglycemic and five non-hypoglycemic sorghum lines bred in RDA were determined using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS). The twelve sorghum lines exhibited 104 peptides on CM10 protein chip array (weak cation exchange) and 95 peptides on Q10 (weak cation exchange) in the molecular mass range from 2,000 to 20,000 Da. Heat map via supervised hierarchical clustering of the significantly different peptides (p < 0.01) in peak intensity among the 12 lines effectively revealed the specifically upregulated peptides in each line and distinguished between 7 hypoglycemic and 5 non-hypoglycemic lines. Through the comparison with hypoglycemic and non-hypoglycemic lines, 10 peptides including 2231.6, 2845.4, 2907.9, 3063.5, 3132.6, 3520.8, 4078.8, 5066.2, 5296.5, 5375.5 Da were specifically high-expressed in hypoglycemic lines at p < 0.00001. This study characterized seed peptides of 12 sorghums and found ten peptides highly expressed for hypoglycemic sorghum lines, which could be used as peptide biomarkers for identification of hypoglycemic sorghum.

혈당 강하를 목적으로 선발된 수수계통의 종자 유래 펩타이드의 양적, 질적 형질을 특성화하고 혈당 강하 수수에서 특이적으로 발현 펩타이드를 선발하기 위하여, 혈당 강하수수 7계통과 비 혈당 강하 수수 5계통에 대한 종자 펩타이드 프로파일링을 SELDI-TOF MS 기법을 활용하여 분석하였다. 1. 분자량의 범위가 2~20 kDa에서 검출된 수수 12계통 종자의 펩타이드는 CM10 (weak cation exchanger)에서 104개와 Q10 (strong anion exchanger)에서 95개였으며, 펩타이드 양적발현에서 12계통 간 유의성(p < 0.01)을 보인 펩타이드는 CM10에서 99개와 Q10에서 93개였다. 2. 12계통 간 양적 발현에 유의적(p < 0.01) 펩타이드를 이용한 heat map 분석에서 수수 각 계통 종자의 고유한 펩타이드 프로파일과 특이적으로 발현하는 펩타이드를 제시하고 있다. 3. 수수 12계통간의 근연거리를 이용한 군집분석에서 혈당 강하 수수 7계통과 비 혈당 강하 수수 5계통이 서로 다른 2개의 군집을 형성하였다. 4. 혈당 강하 계통에서 유의성(p < 0.00001)이 있게 발현되는 펩타이드를 29개 선정하였으며, 이중에서 혈당강하 계통에서만 공통적으로 높게 발현된 10개의 펩타이드(분자량이 2231.6, 2845.4, 2907.9, 3063.5, 3132.6, 3520.8, 4078.8, 5066.2, 5296.5, 5375.5 Da)를 선발하였다.

Keywords

References

  1. Belton, P. S. and J. R. N. Taylor. 2004. Sorghum and millets: protein sources for Africa. Trends in Food Science & Technology 15 : 94-98. https://doi.org/10.1016/j.tifs.2003.09.002
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72 : 248-54. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Camargo Filho, I., D. A. G. Cortez, T. Ueda-Nakamura, C. V. Nakamura, and B. P. Dias Filho. 2008. Antiviral activity and mode of action of a peptide isolated from Sorghum bicolor. Phytomedicine 15 : 202-8. https://doi.org/10.1016/j.phymed.2007.07.059
  4. Dykes, L. and L. W. Rooney. 2006. Sorghum and millet phenols and antioxidants. J Cereal Sci. 44 : 236-251. https://doi.org/10.1016/j.jcs.2006.06.007
  5. Emami, K., N. J. Morris, S. J. Cockell, G. Golebiowska, Q. Y. Shu, and A. M. Gatehouse. 2010. Changes in protein expression profiles between a low phytic acid rice (Oryza sativa L. Ssp. japonica) line and its parental line: a proteomic and bioinformatic approach. J Agric Food Chem 58 : 6912-22. https://doi.org/10.1021/jf904082b
  6. Farrokhi, N., J. P. Whitelegge, and J. A. Brusslan. 2008. Plant peptides and peptidomics. Plant Biotechnol J. 6 : 105-34. https://doi.org/10.1111/j.1467-7652.2007.00315.x
  7. Hamaker, B. R., A. A. Mohamed, J. E. Habben, C. P. Huang, and B. A. Larkins. 1995. Efficient procedure for extracting maize and sorghum kernel proteins reveals higher prolamin contents than the conventional method. Cereal Chem 72 : 583-588.
  8. Hartmann, R. and H. Meisel. 2007. Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol 18 : 163-9. https://doi.org/10.1016/j.copbio.2007.01.013
  9. Issaq, H. J., T. D. Veenstra, T. P. Conrads, and D. Felschow. 2002. The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochem Biophys Res Commun 292 : 587-92. https://doi.org/10.1006/bbrc.2002.6678
  10. Jeon, H. S., I. M. Chung, K. H. Ma, E. H. Kim, S. J. Young, and J. K. Ahn. 2011. Analysis of Phenolic Compounds in Sorghum, Foxtail Millet and Common Millet. Korean J Crop Sci. 56 : 361-74. https://doi.org/10.7740/kjcs.2011.56.4.361
  11. Kamath, V., S. Niketh, A. Chandrashekar, and P. S. Rajini. 2007. Chymotryptic hydrolysates of ${\alpha}$-kafirin, the storage protein of sorghum (Sorghum bicolor) exhibited angiotensin converting enzyme inhibitory activity. Food Chem 100 : 306-311. https://doi.org/10.1016/j.foodchem.2005.10.004
  12. Ki, H. Y., E. S. Seong, B. K. Ghimire, I. M. Chung, S. S. Kwon, E. J. Goh, K. Heo, M. J. Kim, J. D. Lim, D. Lee, and C. Y. Yu. 2009. Antioxidant and antimicrobial activities of crude sorghum extract. Food Chem 115 : 12341-239.
  13. Kim, W. S., S. Jang, and H. B. Krishnan. 2012. Accumulation of Leginsulin, a Hormone-Like Bioactive Peptide, is Drastically Higher in Asian than in North American Soybean Accessions. Crop Sci. 52 : 262-71. https://doi.org/10.2135/cropsci2011.08.0454
  14. Mincoff, P. C., D. A. Garcia Cortez, T. Ueda-Nakamura, C. V. Nakamura, and B. P. Dias Filho. 2006. Isolation and characterization of a 30kD antifungal protein from seeds of Sorghum bicolor. Research in Microbiology 157 : 326-332. https://doi.org/10.1016/j.resmic.2005.09.009
  15. Ndao, M., A. Rainczuk, M. C. Rioux, T. W. Spithill, and B. J. Ward. 2010. Is SELDI-TOF a valid tool for diagnostic biomarkers? Trends in Parasitology 26 : 561-67. https://doi.org/10.1016/j.pt.2010.07.004
  16. Ng, T. B. 2004. Antifungal proteins and peptides of leguminous and non-leguminous origins. Peptides 25 : 1215-22. https://doi.org/10.1016/j.peptides.2004.03.012
  17. Park, J. H., S. H. Lee, I. M. Chung, and Y. Park. Sorghum extract exerts an anti-diabetic effect by improving insulin sensitivity via PPAR-gamma in mice fed a high-fat diet. Nutr Res Pract 6 : 322-7. https://doi.org/10.4162/nrp.2012.6.4.322
  18. Park, S. H. and S. R. Bean. 2003. Investigation and optimization of the factors influencing sorghum protein extraction. J Agric Food Chem 51 : 7050-4. https://doi.org/10.1021/jf034533d
  19. Park, S. J., J. Y. Park, Y. H. Lee, S. M. Hwang, A. R. Kim, J. Y. Ko, and T. W. Kim. 2013. Optimization of SELDI-TOF MS for Peptide Profiling of Sorghum Seed. Korean J Crop Sci. 58(1) : 50-56 https://doi.org/10.7740/kjcs.2013.58.1.050
  20. Park, S. J., Y. H. Lee, Y. J. Nam, B. K. Baik, and T. W. Kim. 2013. Peptide-Based Biomarker Discovery for Identification of Rice Cultivars using Surface Enhanced Laser Desorption/ Ionization Time-of-Flight Mass Spectrometry. Crop Sci. 53 : 987-95 https://doi.org/10.2135/cropsci2012.08.0509
  21. Petricoin, E. F. and L. A. Liotta. 2004. SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer. Curr Opin Biotechnol 15 : 24-30. https://doi.org/10.1016/j.copbio.2004.01.005
  22. Povero, G., M. Papale, G. Loreto, A. Alpi, P. Perata, and E. Loreti. 2010. Identification of Grapevine Cultivar Biomarkers Using Surface-Enhanced Laser Desorption and Ionization (SELDI-TOF-MS). Am J Enol Vitic 61 : 492-97. https://doi.org/10.5344/ajev.2010.10010
  23. Rural Development Administration. 2013. Development of Health Supplement Functional Material for Blood Sugar Decrease in Sorghum.
  24. Sarmadi, B. H. and A. Ismail. 2010. Antioxidative peptides from food proteins: a review. Peptides 31 : 1949-56. https://doi.org/10.1016/j.peptides.2010.06.020
  25. Seo, M. S., J. Y. Ko, S. B. Song, J. S. Lee, J. R. Kang, D. Y. Kwak, B. G. Oh, Y. N. Yoon, M. H. Nam, H. S. Jeong, and K. S. Woo. 2011. Antioxidant Compounds and Activities of Foxtail Millet, Proso Millet and Sorghum with Different Pulverizing Methods. J. Korean Soc. Food Sci. Nutr. 40 : 790-7. https://doi.org/10.3746/jkfn.2011.40.6.790
  26. Silva-Sanchez, C., A. P. de la Rosa, M. F. Leon-Galvan, B. O. de Lumen., A. de Leon-Rodriguez, and E. G. de Mejia. 2008. Bioactive peptides in amaranth (Amaranthus hypochondriacus) seed. J Agric Food Chem 56 : 1233-40. https://doi.org/10.1021/jf072911z