DOI QR코드

DOI QR Code

Lu-Hf 동위원소시스템의 지질학적 활용

Lu-Hf Isotopic Systematics and Its Applications for Geology

  • 최성희 (충남대학교 자연과학대학 지질환경과학과)
  • Choi, Sung Hi (Department of Geology and Earth Environmental Sciences, Chungnam National University)
  • 투고 : 2014.06.27
  • 심사 : 2014.09.02
  • 발행 : 2014.09.30

초록

Lu-Hf 시스템은 다중검출기부착 유도결합플라즈마 질량분석기의 발달과 함께 최근 들어 지질학에 폭넓게 활용되고 있는 동위원소시스템이다. 본 연구는 Lu-Hf 동위원소시스템의 기본 원리를 소개하고, 지질연 대측정 도구로서 또 암석 성인 연구의 지시자로서의 Lu-Hf 시스템이 활용되고 있는 사례를 소개하며 향후 연구 방향을 제안한다. 나아가서는 우리나라 고철질 내지는 초고철질 암석시료에 활용한 사례를 바탕으로 Hf 동위원소를 통해 본 한반도 맨틀의 생성과 진화과정에 대해 논의한다.

The Lu-Hf isotope system, coupled with the advent of multiple collector inductively coupled plasma source mass spectrometry, is now widely utilized as a tracer for geological processes. The paper presents a comprehensive review on the principles of the Lu-Hf isotopes, and its current and potential applications to both geochronology and petrogenesis. Finally, based on the Lu-Hf isotopic data from Korean mafic and ultramafic rocks, its has been discussed evolution of the mantle beneath the Korean Peninsula.

키워드

참고문헌

  1. Amelin, Y., 2005, Meteorite phosphates show constant 176Lu decay rate since 4557 million years ago. Science, 310, 839-841. https://doi.org/10.1126/science.1117919
  2. Amelin, Y., Lee, D.-C. and Halliday, A.N., 2000, Early-middle Archean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta, 64, 4205-4225. https://doi.org/10.1016/S0016-7037(00)00493-2
  3. Amelin, Y., Lee, D.-C., Halliday, A.N. and Pidgeon, R.T., 1999, Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature, 399, 252-255. https://doi.org/10.1038/20426
  4. Andres, M., Blichert-Toft, J. and Schilling, J., 2004, Nature of the depleted upper mantle beneath the Atlantic: Evidence from Hf isotopes in normal mid-ocean ridge basalts from $79^{\circ}N$ to $55^{\circ}S$. Earth and Planetary Science Letters, 225, 89-103. https://doi.org/10.1016/j.epsl.2004.05.041
  5. Ayers, J.C., Dittmer, S.K. and Layne, G.D., 1997, Partitioning of elements between peridotite and $H_{2}O$ at 2.0-3.0 GPa and 900-1000oC, and application to models of subduction zone processes. Earth and Planetary Science Letters, 150, 381-398. https://doi.org/10.1016/S0012-821X(97)00096-4
  6. Bizimis, M., Sen, G. and Salters, V.J.M., 2003, Hf-Nd isotope decoupling in the oceanic lithosphere: constraints from spinel peridotites from Oahu, Hawaii. Earth and Planetary Science Letters, 217, 43-58.
  7. Bizzarro, M., Baker, J.A., Haack, H., Ulfbeck, D. and Rosing, M., 2003, Early history of Earth's crust-mantle system inferred from hafnium isotopes in chondrites. Nature, 421, 931-933. https://doi.org/10.1038/nature01421
  8. Blichert-Toft, J., Agranier, A., Andres, M., Kingsley, R., Schilling, J. and Albarede, F., 2005, Geochemical segmentation of the Mid-Atlantic Ridge north of Iceland and ridge-hot spot interaction in the North Atlantic. Geochemistry Geophysics Geosystems, 6, http://dx.doi.org/10.1029/2004GC000788.
  9. Blichert-Toft, J. and Albarede, F., 1997, The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle- crust system. Earth and Planetary Science Letters, 148, 243-258. https://doi.org/10.1016/S0012-821X(97)00040-X
  10. Blichert-Toft, J., Albarede, F. and Kornprobst, J., 1999, Lu- Hf isotope systematics of garnet pyroxenites from Beni Bousera, Morocco: implications for basalt origin. Science, 283, 1303-1306. https://doi.org/10.1126/science.283.5406.1303
  11. Bouvier, A., Vervoort, J.D. and Patchett, P.J., 2008, The Lu- Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273, 48-57. https://doi.org/10.1016/j.epsl.2008.06.010
  12. Brenan, J.M., Shaw, H.F., Phinney, D.L. and Ryerson, J.F., 1994, Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: implications for high field strength element depletion in island arc basalts. Earth and Planetary Science Letters, 128, 327-339. https://doi.org/10.1016/0012-821X(94)90154-6
  13. Chauvel, C. and Blichert-Toft, J., 2001, A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth and Planetary Science Letters, 190, 137-151. https://doi.org/10.1016/S0012-821X(01)00379-X
  14. Chauvel, C., Hofmann, A.W. and Vidal, P., 1992, HIMUEM: The French Polynesian connection. Earth and Planetary Science Letters, 110, 99-119. https://doi.org/10.1016/0012-821X(92)90042-T
  15. Cheong, C.-S., Yi, K., Kim, N., LEe, T.-H., Lee, S.R., Geng, J.-Z. and Li, H.-K., 2013, Tracking source materials of Phanerozoic granitoids in South Korea by zircon Hf isotopes. Terra Nova, 25, 228-235. https://doi.org/10.1111/ter.12027
  16. Cherniak, D.J., Hanchar, J.M. and Watson, E.B., 1995, Hf and rare earth diffusion in zircons. EOS Transactions American Geophysical Union, 75, 704.
  17. Choi, H.-O., Choi, S.H., Lee D.-C. and Kang, H.-C., 2013, Geochemical evolution of basaltic volcanism within the Tertiary basins of southeastern Korea and the opening of the East Sea (Sea of Japan). Journal of Volcanology and Geothermal Research, 249, 109-122. https://doi.org/10.1016/j.jvolgeores.2012.09.007
  18. Choi, S.H. and Kwon, S.-T., 2005, Mineral chemistry of spinel peridotite xenoliths from Baengnyeong Island, South Korea, and its implications for the paleogeotherm of the uppermost mantle. Island Arc, 14, 236-253. https://doi.org/10.1111/j.1440-1738.2005.00469.x
  19. Choi, S.H. and Mukasa, S.B., 2012, Lu-Hf and Sm-Nd isotope systematics of Korean spinel peridotites: A case for metasomatically induced Nd-Hf decoupling. Lithos, 154, 263-275. https://doi.org/10.1016/j.lithos.2012.07.017
  20. Choi, S.H., Mukasa, S.B., Andronikov, A.V., Osanai, Y., Harley, S.L. and Kelly, N.M., 2006, Lu-Hf systematics of ultra-high temperature Napier Metamorphic Complex in Antarctica: Evidence for the early Archean differentiation of Earth's mantle. Earth and Planetary Science Letters, 246, 305-316. https://doi.org/10.1016/j.epsl.2006.04.012
  21. Choi, S.H., Mukasa, S.B., Kwon, S.-T. and Andronikov, A.V., 2006, Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic alkali basalts in South Korea: Evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia. Chemical Geology, 232, 134-151. https://doi.org/10.1016/j.chemgeo.2006.02.014
  22. Choi, S.H., Mukasa, S.B., Zhou, X.-H., Xian, X.H. and Andronikov, A.V., 2008, Mantle dynamics beneath East Asia constrained by Sr, Nd, Pb and Hf isotopic systematics of ultramafic xenoliths and their host basalts from Hannuoba, North China. Chemical Geology, 248, 40-61. https://doi.org/10.1016/j.chemgeo.2007.10.008
  23. Choi, S.H., Suzuki, K., Mukasa, S.B., Lee, J.-I. and Jung, H., 2010, Lu-Hf and Re-Os systematics of peridotite xenoliths from Spitsbergen, western Svalbard: Implications for mantle-crust coupling. Earth and Planetary Science Letters, 297, 121-132. https://doi.org/10.1016/j.epsl.2010.06.013
  24. Downes, H., 2001, Formation and modification of the shallow sub-continental lithospheric mantle: A review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of western and central Europe. Journal of Petrology, 42, 233-250. https://doi.org/10.1093/petrology/42.1.233
  25. Eisele, J., Sharma, M., Galer, S.J.G., Blichert-Toft, J., Devey, C.W. and Hofmann, A.W., 2002, The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth and Planetary Science Letters, 196, 197-212. https://doi.org/10.1016/S0012-821X(01)00601-X
  26. Elliott, T., Plank, T., Zindler, A., White, W.M. and Bourdon, B., 1997, Element transport from subducted slab to juvenile crust at the Mariana arc. Journal of Geophysical Research, 102, 14991-15019. https://doi.org/10.1029/97JB00788
  27. Gao, S., Rudnick, R.L., Carlson, R.W., McDonough, W.F. and Liu, Y.-S., 2002, Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters, 198, 307-322. https://doi.org/10.1016/S0012-821X(02)00489-2
  28. Godfrey, L.V., Lee, D.-C., Sangrey, W.F., Halliday, A.N., Salters, V.J.M., Hein, J.R. and White, W.M., 1997, The Hf isotopic composition of ferromanganese nodules and crusts and hydrothermal manganese deposits: Implications for seawater Hf. Earth and Planetary Science Letters, 151, 91-105. https://doi.org/10.1016/S0012-821X(97)00106-4
  29. Griffin, W.L., Andi, Z., O'Reilly, S.Y. and Ryan, C.G., 1998, Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In Mantle Dynamics and Plate Interactions in East Asia (eds. Flower, M., Chung, S.-L., Lo, C.-H. and Lee, T.Y.), American Geophysical Union Geophysical Monograph, Vol. 27, 107-126.
  30. Hanan, E.H., Wagner, T.P. and Grove, T.L., 1994, Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chemical Geology, 117, 149-166. https://doi.org/10.1016/0009-2541(94)90126-0
  31. Hawkesworth, C., Turner, S., Peate, D., McDermott, F. and van Calsteren, P., 1997, Element U and Th variations in island arc rocks: Implications for U-series isotopes. Chemical Geology, 139, 207-221. https://doi.org/10.1016/S0009-2541(97)00036-3
  32. Johnson, C.M. and Beard, B.L., 1993, Evidence from hafnium isotopes for ancient sub-oceanic mantle beneath the Rio Grande rift. Nature, 362, 441-444. https://doi.org/10.1038/362441a0
  33. Johnson, C.M., Shirey, S.B. and Barovich, K.M., 1996, New approaches to crustal evolution studies and the origin of granitic rocks: What can the Lu-Hf and Re-Os isotope systems tell us? Royal Society of Edinburgh Transactions, Earth Sciences, 87, 339-352. https://doi.org/10.1017/S0263593300006738
  34. Kim, S.W., Williams, I.S., Kwon, S. and Oh, C.W., 2008, SHRIMP zircon geochronology, and geochemical characteristics of metaplutonic rocks from the southwestern Gyeonggi Block, Korea: Implications for Paleoproterozoic to Mesozoic tectonic links between the Korean peninsula and eastern China. Precambrian Research, 162, 475-497. https://doi.org/10.1016/j.precamres.2007.10.006
  35. Lapen, T.J., Medaris Jr., L.G., Johnson, C.M. and Beard, B.L., 2005, Archean to middle Proterozoic evolution of Baltica subcontinental lithosphere: evidence from combined Sm-Nd and Lu-Hf isotope analyses of the Sandvik ultramafic body, Norway. Contributions to Mineralogy and Petrology, 150, 131-145. https://doi.org/10.1007/s00410-005-0021-z
  36. Lee, S.R., Cho, D.-L., Cho, M., Wu, F.-Y., Kim, H. and Jeon, H., 2007, Hf isotopic evidence for Paleoarchean (>3.5 Ga) crustal components in the Korean Peninsula. Geosciences Journal, 11, 271-277. https://doi.org/10.1007/BF02857045
  37. Lee, S.R. and Walker, R.J., 2006, Re-Os isotope systematics of mantle xenoliths from South Korea: Evidence for complex growth and loss of lithospheric mantle beneath East Asia. Chemical Geology, 231, 90-101. https://doi.org/10.1016/j.chemgeo.2006.01.003
  38. Lorand, J.-P., Luguet, A. and Alard, O., 2013, Platinumgroup element systematics and petrogenetic processing of the continental upper mantle: A review. Lithos, 164-167, 2-21. https://doi.org/10.1016/j.lithos.2012.08.017
  39. McKenzie, D. and O'Nions, R.K., 1991, Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 32, 1021-1091. https://doi.org/10.1093/petrology/32.5.1021
  40. Menzies, M.A., Fan, W.M. and Zhang, M., 1993, Paleozoic and Cenozoic lithoprobes and the loss of >120 km of Archean lithosphere, Sino-Korean craton, China. In Magmatic Processes and Plate Tectonics (ed. Prichard, H.M.), Geological Society of London, 71-81.
  41. Menzies, M.A., Xu, Y.G., Zhang, H.F. and Fan, W.M., 2007, Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos, 96, 1-21. https://doi.org/10.1016/j.lithos.2006.09.008
  42. Munker, C., Weyer, S., Scherer, E. and Mezger, K., 2001, Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochemistry Geophysics Geosystems, 2, http://dx.doi.org/10.1029/2001GC000183.
  43. Nir-El, Y. and Lavi, N., 1998, Measurement of the half-life of $^{176}Lu$. Applied Radiation and Isotopes, 49, 1653-1655. https://doi.org/10.1016/S0969-8043(97)10007-0
  44. Patchett, P.J., 1983, Hafnium isotope results from mid-ocean ridges and Kerguelen. Lithos, 16, 47-51. https://doi.org/10.1016/0024-4937(83)90033-6
  45. Patchett, P.J., Kouvo, O., Hedge, C.E. and Tatsumoto, M., 1981, Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. Contributions to Mineralogy and Petrology, 78, 279-297.
  46. Patchett, P.J. and Tatsumoto, M., 1980, Lu-Hf total-rock isochron for the eucrite meteorite. Nature, 288, 571-574. https://doi.org/10.1038/288571a0
  47. Patchett, P.J., Vervoort, J.D., Soderlund, U. and Salters, V.J.M., 2004, Lu-Hf and Sm-Nd isotopic systematics in chondrites and their constraints on the Lu-Hf properties of the Earth. Earth and Planetary Science Letters, 222, 29-41. https://doi.org/10.1016/j.epsl.2004.02.030
  48. Patchett, P.J., White, W.M., Feldmann, H., Kielinczuk, S. and Hofmann, A.W., 1984, Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth's mantle. Earth and Planetary Science Letters, 69, 365-378. https://doi.org/10.1016/0012-821X(84)90195-X
  49. Pearce, J.A., Kempton, P.D., Nowell, G.M. and Noble, S.R., 1999, Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in western Pacific arc-basin systems. Journal of Petrology, 40, 1579-1611. https://doi.org/10.1093/petroj/40.11.1579
  50. Pearson, D.G., Carlson, R.W., Shirey, S.B., Boyd, F.R. and Nixon, P.H., 1995, Stabilization of Archean lithospheric mantle: A Re-Os isotope study of peridotite xenoliths from the Kaapvaal craton. Earth and Planetary Science Letters, 134, 341-357. https://doi.org/10.1016/0012-821X(95)00125-V
  51. Pearson, D.G. and Nowell, G.M., 2003, Dating mantle differentiation: a comparison of the Lu-Hf, Re-Os and Sm- Nd isotoep systems in the Beni Bousera peridotite massif and constraints on the Nd-Hf composition of the lithospheric mantle. Geophysical Research Abstract 5, 05430.
  52. Reisberg, L. and Lorand, J.P., 1995, Longevity of sub-continental mantle lithosphere from osmium isotope systematics in orogenic peridotite massif. Nature, 376, 159-162. https://doi.org/10.1038/376159a0
  53. Sagong, H., Cheong, C.-S. and Kwon, S.-T., 2003, Paleoproterozoic orogeny in South Korea: evidence from Sm- Nd and Pb step-leaching garnet ages of Precambrian basement rocks. Precambrian Research, 122, 275-295. https://doi.org/10.1016/S0301-9268(02)00215-2
  54. Salters, V.J.M., 1996, The generation of mid-ocean ridge basalts from the Hf and Nd isotope perspective. Earth and Planetary Science Letters, 141, 109-123. https://doi.org/10.1016/0012-821X(96)00070-2
  55. Salters, V.J.M. and Hart, S.R., 1991, The mantle sources of ocean ridges, islands and arcs: the Hf-isotope connection. Earth and Planetary Science Letters, 104, 364-380. https://doi.org/10.1016/0012-821X(91)90216-5
  56. Salters, V.J.M. and White, W.M., 1998, Hf isotope constraint on mantle evolution. Chemical Geology, 145, 447-460. https://doi.org/10.1016/S0009-2541(97)00154-X
  57. Scherer, E., Munker, C. and Mezger, K., 2001, Calibration of the Lutetium-Hafnium clock. Science, 293, 683-687. https://doi.org/10.1126/science.1061372
  58. Scherer, E.E., Cameron, K.L. and Blichert-Toft, J.B., 2000, Lu-Hf garnet geochronology: Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions. Geochimica et Cosmochimica Acta, 64, 3413-3432. https://doi.org/10.1016/S0016-7037(00)00440-3
  59. Schmitz, M.D., Vervoort, J.D., Bowring, S.A. and Patchett, P.J., 2004, Decoupling of the Lu-Hf and Sm-Nd isotope systems during the evolution of granulitic lower crust beneath southern Africa. Geology, 32, 405-408. https://doi.org/10.1130/G20241.1
  60. Soderlund, U., Patchett, P.J., Vervoort, J.D. and Isachsen, C.E., 2004, The $^{176}Lu$ decay constant determined by Lu- Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219, 311-324. https://doi.org/10.1016/S0012-821X(04)00012-3
  61. Stalder, R., Foley, S.F., Brey, G.P. and Horn, I., 1998, Mineral- aqueous fluid partitioning of trace element at $900-1200{^{\circ}C}$ and 3.0-5.7 GPa: new experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochimican et Cosmochimica Acta, 62, 1781-1801. https://doi.org/10.1016/S0016-7037(98)00101-X
  62. Stille, P., Unruh, D.M. and Tatsumoto, M., 1983, Pb, Sr, Nd and Hf isotopic evidence of multiple sources for Oahu, Hawaii basalts. Nature, 304, 25-29. https://doi.org/10.1038/304025a0
  63. Stille, P., Unruh, D.M. and Tatsumoto, M., 1986, Pb, Sr, Nd, and Hf isotopic constraints on the origin of Hawaiian basalts and evidence for a unique mantle source. Geochimica et Cosmochimica Acta, 50, 2303-2319. https://doi.org/10.1016/0016-7037(86)90084-0
  64. Tatsumoto, M., Unruh, D.M. and Patchett, P.J., 1981, U-Pb and Lu-Hf systematics of Antarctic meteorites. National Institute of Polar Research (Tokyo), Special Issue, 20, 237-249.
  65. Turner, S., Hawkesworth, C., van Calsteren, P., Heath, E., Macdonald, R. and Black, S., 1996, U-series isotopes and destructive plate margin magma genesis in the Lesser Antilles. Earth and Planetary Science Letters, 142, 191-207. https://doi.org/10.1016/0012-821X(96)00078-7
  66. Vervoort, J.D. and Blichert-Toft, J., 1999, Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 63, 533-556. https://doi.org/10.1016/S0016-7037(98)00274-9
  67. Vervoort, J.D. and Patchett, P.J., 1996, Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochimica et Cosmochimica Acta, 60, 3717-3733. https://doi.org/10.1016/0016-7037(96)00201-3
  68. Vervoort, J.D., Patchett, P.J., Blichert-Toft, J. and Albarede, F., 1999, Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters, 168, 79-99. https://doi.org/10.1016/S0012-821X(99)00047-3
  69. Walker, R.J., Carlson, R.W., Shirey, S.B. and Boyd, F.R., 1989, Os, Sr, Nd and Pb isotope systematics of souther Africa peridotite xenoliths: Implications for the chemical evolution of subcontinental mantle. Geochimica et Cosmochimica Acta, 53, 1583-1595. https://doi.org/10.1016/0016-7037(89)90240-8
  70. White, W.M. and Hofmann, A.W., 1982, Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature, 296, 821-825. https://doi.org/10.1038/296821a0
  71. Wittig, N., Baker, J.A. and Downes, H., 2007, U-Th-Pb and Lu-Hf isotopic constraints on the evolution of sub-continental lithospheric mantle, French Massif Central. Geochimica et Cosmochimica Acta, 71, 1290-1311. https://doi.org/10.1016/j.gca.2006.11.025

피인용 문헌

  1. 2014, Application of Geochronological and Isotopic Data vol.23, pp.3, 2014, https://doi.org/10.7854/JPSK.2014.23.3.163