References
- American Institute of Steel Construction (AISC) (1989), Manual of steel construction-allowable stress design, 9th Edition, American Institute of Steel Construction, Chicago
- De Jong, K. (1975), "Analysis of the behavior of a class of genetic adaptive systems", Ph.D. Thesis, University of Michigan, Ann Arbor, MI.
- Dorigo, M., Maniezzo, V. and Colorni, A. (1996), "The ant system: optimization by a colony of cooperating agents", IEEE Tran. Syst. Man Cyber. 26(1), 29-41. https://doi.org/10.1109/3477.484436
- Eberhart, R.C. and Kennedy, J. (1995), "A new optimizer using particle swarm theory", Proceedings of the sixth international symposium on micro machine and human science, Nagoya, Japan.
- Erol, O.K. and Eksin, I. (2006), "New optimization method: big bang-big crunch" Adv. Eng. Softw., 37, 106-111. https://doi.org/10.1016/j.advengsoft.2005.04.005
- Fogel, L.J., Owens, A.J. and Walsh, M.J. (1966), Artificial Intelligence Through Simulated Evolution, Wiley, Chichester.
- Geem, Z.W., Kim, J.H. and Loganathan, G.V. (2001), "A new heuristic optimization algorithm: harmony search" Simulation 76(2), 60-68. https://doi.org/10.1177/003754970107600201
- Goldberg, D.E. (1989), Genetic Algorithms in Search Optimization and Machine Learning, Addison-Wesley, Boston.
- Gholizadeh, S. and Barati, H. (2014) "Topology optimization of nonlinear single layer domes by a new metaheuristic", Steel Compos. Struct, 16(6), 681-701. https://doi.org/10.12989/scs.2014.16.6.681
- Hasancebi, O., Carbas, S., Dogan, E., Erdal, F. and Saka, M.P. (2009), "Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures", Comput. Struct., 87, 284-302. https://doi.org/10.1016/j.compstruc.2009.01.002
- Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor.
- Kaveh, A. and Khayatazad, M. (2012), "A new meta-heuristic method: Ray Optimization", Comput. Struct., 112-113, 283-294. https://doi.org/10.1016/j.compstruc.2012.09.003
- Kaveh, A. and Mahdavai, VR. (2014), "Colliding bodies optimization: a novel meta-heuristic method", Comput. Struct., 139, 18-27. https://doi.org/10.1016/j.compstruc.2014.04.005
- Kaveh, A. and Nasrollahi, A. (2013), "Engineering design optimization using a hybrid PSO and HS algorithm", Asian J. Civil Eng., 14(2), 201-223.
- Kaveh, A. and Talatahari, S. (2009a), "Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures", Comput. Struct., 87(5-6), 267-283. https://doi.org/10.1016/j.compstruc.2009.01.003
- Kaveh, A. and Talatahari, S. (2009b), "Size optimization of space trusses using big bang-big crunch algorithm", Comput. Struct., 87(17-18), 1129-1140. https://doi.org/10.1016/j.compstruc.2009.04.011
- Kaveh, A. and Talatahari, S. (2010a), "A novel heuristic optimization method: charged system search", Acta Mech., 213(3-4), 267-289. https://doi.org/10.1007/s00707-009-0270-4
- Kaveh, A. and Talatahari, S. (2010b), "Optimal design of skeletal structures via the charged system search algorithm", Struct. Multidiscip. Optim., 41(6), 893-911. https://doi.org/10.1007/s00158-009-0462-5
- Kaveh, A., Motie Share, M.A. and Moslehi, M. (2013), "A new meta-heuristic algorithm for optimization: magnetic charged system search", Acta Mech., 224(1), 85-107 https://doi.org/10.1007/s00707-012-0745-6
- Kelesoglu, O. and Ulker, M. (2005), "Fuzzy optimization geometrical nonlinear space truss design", Turk. J. Eng. Environ. Sci., 29, 321-329.
- Kirkpatrick, S., Gelatt, C. and Vecchi, M. (1983), "Optimization by simulated annealing", Sci., 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671
- Koza, J.R. (1990), "Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems", Report No. STAN-CS-90-1314, Stanford University, Stanford, CA.
- Lee, K.S. and Geem, Z.W. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82, 781-798. https://doi.org/10.1016/j.compstruc.2004.01.002
- Rashedi, E., Nezamabadi-pour, H. and Saryazdi, S. (2009), "GSA: a gravitational search algorithm", Inf. Sci., 179, 2232-2248. https://doi.org/10.1016/j.ins.2009.03.004
- Schutte, J.J. and Groenwold, A.A. (2003), "Sizing design of truss structures using particle swarms", Struct. Multidiscip. Optim., 25, 261-269. https://doi.org/10.1007/s00158-003-0316-5
- Tsoulos, I.G. (2008), "Modifications of real code genetic algorithm for global optimization", Appl. Math. Comput., 203, 598-607. https://doi.org/10.1016/j.amc.2008.05.005
Cited by
- Application of Probabilistic Particle Swarm in Optimal Design of Large-Span Prestressed Concrete Slabs vol.40, pp.1, 2016, https://doi.org/10.1007/s40996-016-0005-4
- Grasshopper Optimisation Algorithm: Theory and application vol.105, 2017, https://doi.org/10.1016/j.advengsoft.2017.01.004
- Modeling Punching Shear Capacity of Fiber-Reinforced Polymer Concrete Slabs: A Comparative Study of Instance-Based and Neural Network Learning vol.2017, 2017, https://doi.org/10.1155/2017/9897078
- A Sparse Signal Reconstruction Method Based on Improved Double Chains Quantum Genetic Algorithm vol.9, pp.9, 2017, https://doi.org/10.3390/sym9090178
- Optimum shape of large-span trusses according to AISC-LRFD using Ranked Particles Optimization vol.134, 2017, https://doi.org/10.1016/j.jcsr.2017.03.021
- An automated approach for optimal design of prestressed concrete slabs using PSOHS vol.21, pp.3, 2017, https://doi.org/10.1007/s12205-016-1126-9
- Prediction of the Corrosion Current Density in Reinforced Concrete Using a Self-Organizing Feature Map vol.7, pp.10, 2017, https://doi.org/10.3390/coatings7100160
- Hybrid Metaheuristic-Neural Assessment of the Adhesion in Existing Cement Composites vol.7, pp.4, 2017, https://doi.org/10.3390/coatings7040049
- A New Radar Signal Recognition Method Based on Optimal Classification Atom and IDCQGA vol.10, pp.11, 2018, https://doi.org/10.3390/sym10110659
- Structural failure classification for reinforced concrete buildings using trained neural network based multi-objective genetic algorithm vol.63, pp.4, 2014, https://doi.org/10.12989/sem.2017.63.4.429
- A Hybrid Artificial Grasshopper Optimization (HAGOA) Meta-Heuristic Approach: A Hybrid Optimizer For Discover the Global Optimum in Given Search Space vol.4, pp.2, 2014, https://doi.org/10.33889/ijmems.2019.4.2-039