References
- Al-deen, S., Ranzi, G. and Vrcelj, Z. (2011), "Full-scale long-term experiments of simply supported composite beams with solid slabs", J. Construct. Steel Res., 67(3), 308-321. https://doi.org/10.1016/j.jcsr.2010.11.001
- Berczynski, S. and Wroblewski, T. (2005), "Vibration of steel-concrete composite beams using the Timoshenko beam model", J. Vib. Control, 11, 829-848. https://doi.org/10.1177/1077546305054678
- Gianluca, R. (2008), "Locking problems in the partial interaction analysis of multi-layered composite beams", Eng. Struct., 30(10), 2900-2911. https://doi.org/10.1016/j.engstruct.2008.04.006
- Lawson, R.M. (2007), Building design using modules, Steel Construction Institute's Publication 348, Ascot, UK.
- Liang, Q.Q., Uy, B., Bradford, M.A. and Ronagh, H.R. (2004), "Ultimate strength of continuous composite beams in combined bending and shear", J. Construct. Steel Res., 60(8), 1109-1128. https://doi.org/10.1016/j.jcsr.2003.12.001
- Newmark, N.M., Siess C.P. and Viest I.M. (1951), "Tests and analysis of composite beams with incomplete interaction", Proc. Soc. Exp. Stress Anal., 9(1), 75-92.
- Nie, J. and Cai, C.S. (2003), "Steel-concrete composite beams considering shear slip effects", J. Struct. Eng., 129(4), 495-506. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(495)
- Nguyen, Q.H., Hjiaj, M. and Aribert, J.M. (2003), "A space-exact beam element for time-dependent analysis of composite members with discrete shear connection", J. Construct. Steel Res., 66(11), 1330-1338.4.
- Nguyen, Q.H., Hjiaj, M., Uy, B. and Guezouli, S. (2009), "Analysis of composite beams in the hogging moment regions using a mixed finite element formulation", J. Construct. Steel Res., 65(3), 737-748. https://doi.org/10.1016/j.jcsr.2008.07.026
- Nguyen, Q.H., Hjiaj, M. and Guezouli, S. (2011), "Exact finite element model for shear-deformable two-layer beams with discrete shear connection", Finite Elem. Anal. Des., 47(7), 718-727. https://doi.org/10.1016/j.finel.2011.02.003
- Razaqpur, A.G. and Nofal, M. (1989), "A finite element for modelling the nonlinear behavior of shear connectors in composite structures", Comput. Struct., 32(1), 169-174. https://doi.org/10.1016/0045-7949(89)90082-5
- Ranzi, G., Gara, F. and Ansourian, P. (2006), "General method of analysis for composite beams with longitudinal and transverse partial interaction", Comput. Struct., 84(31-32), 2373-2384. https://doi.org/10.1016/j.compstruc.2006.07.002
- Ranzi, G. and Zona, A. (2007), "A steel-concrete composite beam model with partial interaction including the shear deformability of the steel component", Eng. Struct., 29(11), 3026-3041. https://doi.org/10.1016/j.engstruct.2007.02.007
- Ranzi, G., Dall'Asta, A., Ragni, L. and Zona, A. (2010), "A geometric nonlinear model for composite beams with partial interaction", Eng. Struct., 32(5), 1384-1396. https://doi.org/10.1016/j.engstruct.2010.01.017
- Salari, M.R., Spacone, E., Shing, P.B. and Frangopol, D.M. (1998), "Nonlinear analysis of composite beams with deformable shear connectors", J. Struct. Eng., 124(10), 1148-1158. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1148)
- Wright, H.D. (1990), "The deformation of composite beams with discrete flexible connection", J. Construct. Steel Res., 15(1-2), 49-64. https://doi.org/10.1016/0143-974X(90)90042-F