DOI QR코드

DOI QR Code

Isolation and Characterization of Sulfate- and Sulfur-reducing Bacteria from Woopo Wetland, Sunchun Bay, and Tidal Flat of Yellow Sea

우포늪, 순천만, 서해 갯벌에서부터 분리한 황산염/황-환원 세균의 특성 분석

  • Kim, So-Jeong (Department of Microbiology, Chungbuk National University) ;
  • Min, Ui-Gi (Department of Microbiology, Chungbuk National University) ;
  • Hong, Heeji (Department of Microbiology, Chungbuk National University) ;
  • Kim, Jong-Geol (Department of Microbiology, Chungbuk National University) ;
  • Jung, Man-Young (Department of Microbiology, Chungbuk National University) ;
  • Cha, In-Tae (Division of Bioengineering, Incheon National University) ;
  • Rhee, Sung-Keun (Department of Microbiology, Chungbuk National University)
  • Received : 2014.08.20
  • Accepted : 2014.09.15
  • Published : 2014.09.30

Abstract

Sulfur compound includes major electron acceptors for anaerobic respiration. In this study, cultivation-based study on sulfate- and sulfur-reducing bacteria of various wetlands of Korea was attempted. To isolate sulfate- and sulfur-reducing bacteria, anaerobic roll tube method was used to obtain typical black colonies of sulfate- and sulfur-reducing bacteria. Total 11 strains obtained were tentatively identified based on comparative 16S rDNA similarity and physiological property analysis. All sulfate-reducing bacteria (8 strains) belonged to genus Desulfovibrio with >99% 16S rDNA similarities. Three sulfur reducing bacteria were also isolated: two and one isolates were affiliated with Sulfurospirillum and Desulfitobacterium, respectively. These sulfate- and sulfur-reducing bacteria were able to utilize lactate and pyruvate and sulfite and thiosulfate as common electron donors and electron acceptors, respectively. This case study will provide fundamental information for obtaining useful indigenous sulfate- and sulfur-reducing bacteria from Korean wetlands employing various combinations of cultivation conditions.

황화합물은 혐기성환경에서 혐기성호흡을 위한 매우 중요한 전자수용체이다. 본 연구를 통하여 한국의 다양한 습지에서 배양을 통한 황산염/황-환원세균의 특성연구를 실시하였다. 이를 분리하기 위하여 혐기성 roll tube법을 통해 총 11개의 순수 배양체를 확보하였다. 16S rDNA를 이용한 계통분석 및 상동성 분석을 실시하여 Desulfovibrio 속의 세균 8종, Sulfurospirillum 속의 세균 2종, Desulfitobacterium 속의 세균 1종을 얻을 수 있었다. 이들 황산염/황-환원세균은 모두 lactate와 pyruvate를 전자공여체로 이용하였으며, sulfite and thiosulfate를 전자수용체로 이용할 수 있었다. 앞으로, 다양한 전자공여체와 배양조건을 통하여 유용한 절대혐기성 황산염/황-환원세균의 생물자원 확보에 기여할 것으로 기대된다.

Keywords

References

  1. Barton, L.L., and Fauque, G.D. 2009. Biochemistry, physiology and biotechnology of sulfate reducing bacteria. Adv. Appl. Microbiol. 68, 41-98. https://doi.org/10.1016/S0065-2164(09)01202-7
  2. Chang, Y.J., Peacock, A.D., Long, P.E., Stephen, J.R., McKinley, J.P., Macnaughton, S.J., Hussain, A.A., Saxton, A.M., and White, D.C. 2001. Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Appl. Environ. Microbiol. 67, 3149-3160. https://doi.org/10.1128/AEM.67.7.3149-3160.2001
  3. Devereux, R. and Mundfrom, G.W. 1994. A phylogenetic tree of 16S rRNA sequences from sulfate-reducing bacteria in a sandy marine sediment. Appl. Environ. Microbiol. 60, 3437-3439.
  4. Dhillon, A., Teske, A., Dillon, J., Stahl, D.A., and Sogin, M.L. 2003. Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl. Environ. Microbiol. 69, 2765-2772. https://doi.org/10.1128/AEM.69.5.2765-2772.2003
  5. Elshahed, M.S., Senko, J.M., Najar, F.Z., Kenton, S.M., Roe, B.A., Dewers, T.A., Spear, J.R., and Krumholz, L.R. 2003. Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl. Environ. Microbiol. 69, 5609-5621. https://doi.org/10.1128/AEM.69.9.5609-5621.2003
  6. Fauque, G., LeGall, J., and Barton, L. 1991. Sulfate-reducing and sulfurreducing bacteria, pp. 271-337. In Shively, J.M. and Barton, L.L. (eds.), Variations in autotrophic life. Academic Press, New York, N.Y., USA.
  7. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98.
  8. Jorgensen, B.B. 1982. Mineralization of organic matter in the sea bed-the role of sulphate reduction. Nature 296, 643-645. https://doi.org/10.1038/296643a0
  9. Kelly, D.P. and Wood, A.P. 1998. Microbes of the sulfur cycle. In Burlage, R.S., Atlas, R., Stahl, D., Geesey, G., and Sayler, G. (eds.), Techniques in microbial ecology. Oxford University Press, New York, N.Y., USA.
  10. Lane, D. 1991. 16S/23S rRNA sequencing, pp. 115-175. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid techniques in bacterial systematics. John Wiley & Sons, Chichester, England.
  11. Li, J.h., Purdy, K.J., Takii, S., and Hayashi, H. 1999. Seasonal changes in ribosomal RNA of sulfate-reducing bacteria and sulfate reducing activity in a freshwater lake sediment. FEMS Microbiol. Ecol. 28, 31-39. https://doi.org/10.1111/j.1574-6941.1999.tb00558.x
  12. Nakagawa, T., Hanada, S., Maruyama, A., Marumo, K., Urabe, T., and Fukui, M. 2002. Distribution and diversity of thermophilic sulfatereducing bacteria within a Cu-Pb-Zn mine (Toyoha, Japan). FEMS Microbiol. Ecol. 41, 199-209. https://doi.org/10.1111/j.1574-6941.2002.tb00981.x
  13. Rabus, R., Hansen, T.A., and Widdel, F. 2006. Dissimilatory sulfate-and sulfur-reducing prokaryotes. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., and Stackebrandt, E. (eds.), The prokaryotes, Vol. 2, pp. 659-768. Springer, Berlin, Germany.
  14. Ravenschlag, K., Sahm, K., Pernthaler, J., and Amann, R. 1999. High bacterial diversity in permanently cold marine sediments. Appl. Environ. Microbiol. 65, 3982-3989.
  15. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  16. Shinn, M.B. 1941. Colorimetric method for determination of nitrite. Ind. Eng. Chem. Anal. Ed. 13, 33-35. https://doi.org/10.1021/i560089a010
  17. Solorzano, L. 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr 14, 799-801. https://doi.org/10.4319/lo.1969.14.5.0799
  18. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739. https://doi.org/10.1093/molbev/msr121
  19. Tschech, A. and Pfennig, N. 1984. Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Microbiol. 137, 163-167. https://doi.org/10.1007/BF00414460
  20. Wagner, M., Roger, A.J., Flax, J.L., Brusseau, G.A., and Stahl, D.A. 1998. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180, 2975-2982.
  21. Widdel, F. and Bak, F. 1992. Gram-negative mesophilic sulfate-reducing bacteria. In Balows, A., Truper, H.G., Dworkin, M., Harder, W., and Schleifer, K.H. (eds.), The prokaryotes, Vol. 4, pp. 3352-3378. Springer, New York, N.Y., USA.