DOI QR코드

DOI QR Code

Characterization of a Small Cryptic Plasmid from Pseudomonas nitroreducens Strain TX1

Pseudomonas nitroreducens TX1에 존재하는 작은 플라스미드의 특성 규명

  • Nguyen, Ngoc Tuan (Department of Life Sciences, National Central University) ;
  • Lee, Kyoung (Department of Microbiology and Biomedical Institute at CWNU, Changwon National University) ;
  • Kang, Ju Beom (Department of Microbiology and Biomedical Institute at CWNU, Changwon National University) ;
  • Huang, Shir-Ly (Department of Life Sciences, National Central University)
  • Received : 2014.06.26
  • Accepted : 2014.07.19
  • Published : 2014.09.30

Abstract

Pseudomonas nitroreducens TX1 was isolated from a rice field drainage in Taiwan. The bacterium is of special interest because of its capability to use a group of nonionic surfactants such as alkylphenol polyethoxylates even at high concentrations as a sole carbon source. In this study, a small cryptic circular plasmid, pTX1, was characterized from P. nitroreducens TX1. It is 2,286 bp in length with a GC content of 63.3% and harbors three open reading frames, $Rep_{pTX1}$ and functionally unidentified ORF1 and ORF2. The predicted $rep_{pTX1}$ gene product is homologous to Rep proteins of plasmids belonging to the pC194/pUB110 family, which is predominantly found in Gram-positive bacteria and is known to replicate by the rolling-circle mechanism. The copy number of pTX1 was estimated to be about 150 in each cell. Based on the genetic fingerprints and comparison with other plasmids, it is concluded that pTX1 replicates by a rolling circle mechanism which is rarely found for Pseudomonas plasmids.

Pseudomonas nitroreducens TX1는 대만의 벼를 재배하는 논의 배수구에서 분리된 세균이다. 이 균주는 알킬페놀 폴리에톡실레이트와 같은 비이온성 계면활성제를 고농도에서도 탄소원으로 이용할 수 있다. 본 연구에서는 TX1 균주에서 분리된 새로운 플라스미드 pTX1의 특성을 조사하였다. 크기는 2,286 bp, GC 함량은 63.3%, 암호된 유전자로는 $Rep_{pTX1}$과 기능이 밝혀지지 않은 ORF1과 ORF2가 동정되었다. $Rep_{pTX1}$은 롤링-서클 기작에 의해 복제되는 그람 양성 세균에서 주로 발견되는 pC194/pUB110 플라스미드 계열에 속하는 DNA 복제 효소임을 알 수 있었다. 또한 세포마다 약 150개의 플라스미드가 존재함을 규명하였다. 플라스미드에 존재하는 유전자 지문과 유사 플라스미드와의 핵산과 아미노산 서열비교를 통해 pTX1은 슈도모나스 세균에서는 흔히 발견되지 않는 롤링-서클 기작에 의해 복제된다는 것을 확인할 수 있었다.

Keywords

References

  1. Bouia, A., Bringel, F., Frey, L., Kammerer, B., Belarbi, A., Guyonvarch, A., and Hubert, J.C. 1989. Structural organization of pLP1, a cryptic plasmid from Lactobacillus plantarum CCM 1904. Plasmid 22, 185-192. https://doi.org/10.1016/0147-619X(89)90001-2
  2. Chae, J.C., Kim, C.K., and Zylstra, G.J. 2005. Characterization of two small cryptic plasmids from Pseudomonas sp. strain S-47. Biochem. Biophys. Res. Commun. 338, 1600 1606. https://doi.org/10.1016/j.bbrc.2005.10.135
  3. Chen, H.J., Guo, G.L., Tseng, D.H., Cheng, C.L., and Huang, S.L. 2006. Growth factors, kinetics and biodegradation mechanism associated with Pseudomonas nitroreducens TX1 grown on octylphenol polyethoxylates. J. Environ. Manage. 80, 279 286. https://doi.org/10.1016/j.jenvman.2005.09.009
  4. Chen, H.J., Huang, S.L., and Tseng, D.H. 2004. Aerobic biotransformation of octylphenol polyethoxylate surfactant in soil microcosms. Environ. Technol. 25, 201 210. https://doi.org/10.1080/09593330409355453
  5. Chen, H.J., Tseng, D.H., and Huang, S.L. 2005. Biodegradation of octylphenol polyethoxylate surfactant Triton X-100 by selected microorganisms. Bioresour. Technol. 96, 1483 1491. https://doi.org/10.1016/j.biortech.2004.11.013
  6. del Solar, G., Giraldo, R., Ruiz-Echevarria, M.J., Espinosa, M., and Diaz-Orejas, R. 1998. Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev. 62, 434 464.
  7. Gibson, D.T., Cardini, G.E., Maseles, F.C., and Reino, E. 1970. Oxidative degradation of aromatic hydrocarbons by microorganisms. IV. Incorporation of oxygen-18 into benzene by Pseudomonas putida. Biochemistry 9, 1631 1635. https://doi.org/10.1021/bi00809a024
  8. Gruss, A.D., Ross, H.F., and Novick, R.P. 1987. Functional analysis of a palindromic sequence required for normal replication of several staphylococcal plasmids. Proc. Natl. Acad. Sci. USA 84, 2165 2169. https://doi.org/10.1073/pnas.84.8.2165
  9. Holtwick, R., von Wallbrunn, A., Keweloh, H., and Meinhardt, F. 2001. A novel rolling-circle-replicating plasmid from Pseudomonas putida P8: molecular characterization and use as vector. Microbiology 147, 337 344. https://doi.org/10.1099/00221287-147-2-337
  10. Huang, S.L., Chen, H., Hu, A., Tuan, N.N., and Yu, C.P. 2014. Draft genome sequence of Pseudomonas nitroreducens strain TX1, which degrades nonionic surfactants and estrogen-like alkylphenols. Genome Announc. 2.
  11. Ilyina, T.V. and Koonin, E.V. 1992. Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res. 20, 3279 3285. https://doi.org/10.1093/nar/20.13.3279
  12. Khan, S.A. 1997. Rolling-circle replication of bacterial plasmids. Microbiol. Mol. Biol. Rev. 61, 442 455.
  13. Kramer, M.G., Espinosa, M., Misra, T.K., and Khan, S.A. 1999. Characterization of a single-strand origin, ssoU, required for broad host range replication of rolling-circle plasmids. Mol. Microbiol. 33, 466 475. https://doi.org/10.1046/j.1365-2958.1999.01471.x
  14. Lin, Y.W., Guo, G.L., Hsieh, H.C., and Huang, S.L. 2010. Growth of Pseudomonas sp. TX1 on a wide range of octylphenol polyethoxylate concentrations and the formation of dicarboxylated metabolites. Bioresour. Technol. 101, 2853 2859. https://doi.org/10.1016/j.biortech.2009.11.029
  15. Qin, Z., Shen, M., and Cohen, S.N. 2003. Identification and characterization of a pSLA2 plasmid locus required for linear DNA replication and circular plasmid stable inheritance in Streptomyces lividans. J. Bacteriol. 185, 6575 6582. https://doi.org/10.1128/JB.185.22.6575-6582.2003
  16. Rehm, B.H.A. 2008. Chapter 11. Pseudomonas plasmids, pp. 293 327. In Thomas, C.M., Haines, A.S., Kosheleva, I.A., and Boronin, A. (eds.), Pseudomonas: model organism, pathogen, cell factory. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
  17. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876 4882. https://doi.org/10.1093/nar/25.24.4876
  18. Tuan, N.N., Hsieh, H.C., Lin, Y.W., and Huang, S.L. 2011. Analysis of bacterial degradation pathways for long-chain alkylphenols involving phenol hydroxylase, alkylphenol monooxygenase and catechol dioxygenase genes. Bioresour. Technol. 102, 4232 4240. https://doi.org/10.1016/j.biortech.2010.12.067
  19. Wang, P.Z., Projan, S.J., Henriquez, V., and Novick, R.P. 1993. Origin recognition specificity in pT181 plasmids is determined by a functionally asymmetric palindromic DNA element. EMBO J. 12, 45 52.
  20. Wilson, K. 2003. UNIT 2.4. Preparation of genomic DNA from bacteria, pp. 208 209. In Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (eds.). Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY, USA.
  21. Yasukawa, H., Hase, T., Sakai, A., and Masamune, Y. 1991. Rolling-circle replication of the plasmid pKYM isolated from a Gram-negative bacterium. Proc. Natl. Acad. Sci. USA 88, 10282 10286. https://doi.org/10.1073/pnas.88.22.10282
  22. Yen, K.M. and Serdar, C.M. 1988. Genetics of naphthalene catabolism in pseudomonads. Crit. Rev. Microbiol. 15, 247 268. https://doi.org/10.3109/10408418809104459