DOI QR코드

DOI QR Code

원유시료에서 분리한 대장균의 퀴놀론 항생제 내성 기전

Prevalence and Molecular Characterization of Quinolone Antibiotic Resistance in Escherichia coli Isolates from Raw Bulk Milk in Gyeonggi-do

  • 강소원 (삼육대학교 동물생명공학과) ;
  • 이상진 (삼육대학교 동물생명공학과) ;
  • 최성숙 (삼육대학교 약학과)
  • Kang, Sowon (Department of Animal Biotechnology, Sahmyook University) ;
  • Lee, Sangjin (Department of Animal Biotechnology, Sahmyook University) ;
  • Choi, Sungsook (College of Pharmacy, Sahmyook University)
  • 투고 : 2014.06.18
  • 심사 : 2014.07.17
  • 발행 : 2014.09.30

초록

원유시료에서 분리한 대장균의 quinolone 항생제 내성비율과 그 내성 결정인자를 분석하였다. 원유시료에서 대장균을 분리하고 quinolone 항생제인 nalidixic acid와 ciprofloxacin에 대한 MIC값을 결정하였으며 내성균을 대상으로 염색체상에 있는 quinolone 내성 결정부위(quinolone resistant determining region, QRDR)인 gyrA, gyrB, parC, pareE의 염기서열 분석, 플라스미드상에 존재하는 내성유전자(plasmid mediated quinolone resistant, PMQR) qnrA, qnrB, qnrS, aac(6')-lb-cr, qepA의 분석 및 약물 유출펌프 유전자인 acrB의 발현을 비교 분석하였다. 그 결과 총 487개의 대장균군 세균중 9개의 균이 nalidixic acid에 내성임을 확인하였으며($MIC{\geq}64{\mu}g/ml$) 이중 6개 균주가 ciprofloxacin에도 내성임을 확인하였다(MIC $4-16{\mu}g/ml$)). 9개의 내성 균주 모두 QRDR의 gyrA 영역 codon 83에 변이(S83L)를 갖고 있었으며 그 중 2균주는 codon 83과 87 (S83L and D87N)에 이중 돌연변이를 갖고 있었다. 한편 9균주 중 3개의 균주에서 parC 영역 codon 80 (S80I)에 변이를 갖고 있었다. 플라스미드 상에 존재하는 내성유전자인 qnrA, qnrB, qnrS, aac(6')-lb-cr 및 qepA 유전자는 존재하지 않았으며 AcrAB-TolC efflux pump 유전자인 acrB 유전자가 대조균인 E. coli ATCC 25922와 비교하여 ciprofloxacin 내성 균주 6균주 중 4균주에서 유의적으로 과발현(2.15-5.74배) 되고 있음을 확인하였다.

The aim of this study was to investigate the prevalence of quinolone resistant E. coli from raw bulk milk and to characterize the resistance determinants. In this study, the gyrA, gyrB, parC, and parE quinolone resistance determining regions (QRDR) were sequenced from quinolone resistant E. coli isolates. Also, the presence of plasmid-mediated quinolone resistance (PMQR) and the expression of efflux pump genes based on quantitative real-time PCR (qRT-PCR) were investigated. Of the 487 coliform bacteria, 9 strains showed nalidixic acid resistance, and 6 of the 9 nalidixic acid resistant isolates were also ciprofloxacin resistant. These 9 strains had a single mutation at codon 83 (S83L) in gyrA, 2 of them had double mutations at codon 83 and 87 (S83L and D87N) in gyrA and 3 of the 9 isolates had single mutations at codon 80 (S80I) in parC. None of the 9 isolates harbored PMQR determinants. Compared with wild-type E. coli ATCC 25922, an over-expression of the acrB gene (2.15-5.74 fold), encoding the pump component of the AcrAB-TolC efflux pump was observed in 4 of 6 ciprofloxacin resistant isolates. This study identified the quinolone resistance mechanism of E. coli isolated from raw milk samples in Gyeonggi-do.

키워드

참고문헌

  1. Botrel, M.A., Haenni, M., Morignat, E., Sulpice, P., Madec, J.Y., and Calavas, D. 2010. Distribution and antimicrobial resistance of clinical and subclinical mastitis pathogens in dairy cows in Rhone-Alpes, France. Foodborne Pathog. Dis. 7, 479-487. https://doi.org/10.1089/fpd.2009.0425
  2. Clinical and Laboratory Standards Institute (CLSI). 2009. Performance standards for antimicrobial susceptibility testing, 19th Informational Supplement. Document M100-S19, CLSI, Wayne, PA, USA.
  3. Giraud, E., Brisabois, A., Martel, J.L., and Chaslus-Dancla, E. 1999. Comparative studies of mutations in animal isolates and experimental in vitro- and in vivo-selected mutants of Salmonella spp. suggest a counter selection of highly fluoroquinolone-resistant strains in the field. Antimicrob. Agents Chemother. 43, 2131-2137.
  4. Hernandez-Alles, S., Benedi, V.J., Martinez-Martinez, L., Pascual, A., Aguilar, A., Tomas, J.M., and Alberti, S. 1999. Development of resistance during antimicrobial therapy caused by insertion sequence interruption of porin genes. Antimicrob. Agents Chemother. 43, 937-939.
  5. Jacoby, G.A. 2005. Mechanism of resistance to quinolones. Clin. Infect. Dis. 41, S120-S126. https://doi.org/10.1086/428052
  6. Jacoby, G.A., Gacharna, N., Black, T.A., Miller, G.H., and Hooper, D.C. 2009. Temporal appearance of plasmid-mediated quinolone resistance genes. Antimicrob. Agents Chemother. 53, 1665-1666. https://doi.org/10.1128/AAC.01447-08
  7. Jung, D.H., Lee, M.Y., Kim, J.M., Lee, J.C., Cho, D.T., and Lee, Y.H. 2006. Isolation of quinolone-resistant Escherichia coli found in major rivers in Korea. J. Microbiol. 44, 680-684.
  8. Karczmarczyk, M., Martins, M., Quinn, T., Leonard, N., and Fanning, S. 2011. Mechanisms of fluoroquinolone resistance in Escherichia coli isolates from food-producing animals. Appl. Environ. Microbiol. 77, 7113-7120. https://doi.org/10.1128/AEM.00600-11
  9. Kim, H.T., Jung, K.T., Kim, G.H., and Ryu, B.S. 2010. Study on antimicrobial resistance of Escherichia coli isolated from domestic meat (beef, pork, chicken and duck) on sale (2009-2010). The Ann. Rep. Busan Meterop. City Institute of Health and Environment 20, 1074-1091.
  10. Kim, H.B., Park, C.H., Kim, C.J., Jacoby, G.A., and Hooper, D.C. 2009. Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob. Agents Chemother. 53, 639-645. https://doi.org/10.1128/AAC.01051-08
  11. Komp Lindgren, P., Karlsson, A., and Hughes, D. 2003. Mutation rate and evolution of fluoroquinolone resistance in Escherichia coli isolates from patients with urinary tract. Antimicorb. Agents Chemother. 47, 3222-3232. https://doi.org/10.1128/AAC.47.10.3222-3232.2003
  12. Lim, S.K. 2012a. Clinically important antimicrobials. J. Kor. Vet. Med. Assoc. 48, 603-609.
  13. Lim, S.K. 2012b. Veterinary clinically important antimicrobials. J. Kor. Vet. Med. Assoc. 48, 662-666.
  14. Liu, X., Boothe, D.M., Thungrat, K., and Aly, S. 2012. Mechanisms accounting for fluoroquinolone multidrug resistance Escherichia coli isolated from companion animals. Vet. Microbiol. 161, 159-168. https://doi.org/10.1016/j.vetmic.2012.07.019
  15. Mammeri, H., Van De Loo, M., Poirel, L., Martinez-Martinez, L., and Nordmann, P. 2005. Emergence of plasmid-mediated quinolone resistance in Escherichia coli in Europe. Antimicrob Agents Chemother. 49, 71-76. https://doi.org/10.1128/AAC.49.1.71-76.2005
  16. Martinez-Martinez, L., Pascual, A., Conejo Mdel, C., Garcia, I., Joyanes, P., Domenech-Sanchez, A., and Benedi, V.J. 2002. Energy-dependent accumulation of norfloxacin and porin expression in clinical isolates of Klebsiella pneumoniae and relationship to extended-spectrum beta-lactamase production. Antimicrob. Agents Chemother. 46, 3926-3932. https://doi.org/10.1128/AAC.46.12.3926-3932.2002
  17. Mazzariol, A., Tokue, Y., Kanegawa, T.M., Cornaglia, G., and Nikaido, H. 2000. High-level fluoroquinolone-resistant clinical isolates of Escherichia coli overproduce multidrug efflux protein acrA. Antimicrob. Agents Chemother. 44, 3441-3443. https://doi.org/10.1128/AAC.44.12.3441-3443.2000
  18. Momtaz, H., Safarpoor Dehkordi, F., Taktaz, T., Rezvani, A., and Yarali, S. 2012. Shiga toxin-producing Escherichia coli isolated from bovine mastitic milk: serogroups, virulence factors, and antibiotic resistance properties. Scientific World Journal. doi: 10.1100/2012/618709. Epub 2012 Nov 19.
  19. Poirel, L., Cattoir, V., and Nordmann, P. 2013. Plasmid-mediated quinolone resistance; interactions between human, animal, and environmental ecologies. Front. Microbiol. 3, 24. doi: 10.3389/fmicb.2012.00024. eCollection.
  20. Rodriguez-Martinez, J.M., Cano, M.E., Velasco, C., Martinez-Martinez, L., and Pascual, A. 2011. Plasmid-mediated quinolone resistance: an update. J. Infect. Chemother. 17, 149-182. https://doi.org/10.1007/s10156-010-0120-2
  21. Strahilevitz, J., Jacoby, G.A., Hooper, D.C., and Robicsek, A. 2009. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin. Microbiol. Rev. 22, 664-689. https://doi.org/10.1128/CMR.00016-09
  22. Tamang, M.D., Nam, H.M., Chae, M.H., Kim, S.R., Gurung, M., Jang, G.C., Jung, S.C., and Lim, S.K. 2012. Prevalence of plasmid mediated quinolone resistance determinants among Escherichia coli isolated from food animals in Korea. Foodborne Pathog. Dis. 9, 1057-1063. https://doi.org/10.1089/fpd.2012.1225
  23. Viveiros, M., Dupont, M., Rodrigues, L., Couto, I., Davin-Regli, A., Martins, M., Pages, J.M., and Amaral, L. 2007. Antibiotic stress, genetic response and altered permeability of E. coli. PLoS ONE 2, e365. https://doi.org/10.1371/journal.pone.0000365
  24. Wenz, J.R., Barrington, G.M., Garry, F.B., McSweeney, K.D., Dinsmore, R.P., Goodell, G., and Callan, R.J. 2001. Bacteremia associated with naturally occurring acute coliform mastitis in dairy cows. J. Am. Vet. Med. Assoc. 219, 976-981. https://doi.org/10.2460/javma.2001.219.976
  25. Yang, S., Clayton, S.R., and Zechiedrich, E.L. 2003. Relative contributions of the AcrAB, MdfA and NorE efflux pumps to quinolone resistance in Escherichia coli. J. Antimicrob. Chemother. 51, 545-556. https://doi.org/10.1093/jac/dkg126
  26. Yang, T., Zeng, Z., Rao, L., Chen, X., He, D., Lv, L., Wang, J., Zeng, L., Feng, M., and Liu, J.H. 2014. The association between occurrence of plasmid-mediated quinolone resistance and ciprofloxacin resistance in Escherichia coli isolates of different origins. Vet. Microbiol. 170, 89-96. https://doi.org/10.1016/j.vetmic.2014.01.019
  27. Yasufuku, T., Shigemura, K., Shirakawa, T., Matsumoto, M., Nakano, Y., Tanaka, K., Arakawa, S., Kinoshita, S., Kawabata, M., and Fujisawa, M. 2011. Correlation of overexpression of efflux pump genes with antibiotic resistance in Escherichia coli strains clinically isolated from urinary tract infection patients. J. Clin. Microbiol. 49, 189-194. https://doi.org/10.1128/JCM.00827-10
  28. Zurfluh, K., Abgottspon, H., Hachler, H., Nuesch-Inderbinen, M., and Stephan, R. 2014. Quinolone resistance mechanisms among extended-spectrum beta-lactamase (ESBL) producing Escherichia coli isolated from rivers and lakes in Switzerland. PLoS ONE 9, e95864. doi: 10.1371. https://doi.org/10.1371/journal.pone.0095864