DOI QR코드

DOI QR Code

Development of a Quantitative Induction Method for Chondromyces crocatus Fruiting Body Formation

Chondromyces crocatus 자실체 형성의 정량적 유도 방법 개발

  • Lee, Chayul (Department of Biotechnology, Hoseo University) ;
  • Shin, Hyejin (Department of Biotechnology, Hoseo University) ;
  • Cho, Kungyun (Department of Biotechnology, Hoseo University)
  • 이차율 (호서대학교 생명공학과) ;
  • 신혜진 (호서대학교 생명공학과) ;
  • 조경연 (호서대학교 생명공학과)
  • Received : 2014.07.14
  • Accepted : 2014.07.26
  • Published : 2014.09.30

Abstract

We have developed a method for the preparation of dispersed cell suspensions of Chondromyces crocatus, which is essential for quantitative studies of fruiting body formation. Cells of C. crocatus have a tendency to aggregate in liquid, hindering quantitative studies. However, cells grown on casitone-yeast extract agar plates, containing 3% agar, allowed the preparation of well-dispersed cell suspensions. Cell suspensions at a concentration of $2{\times}10^8cells/ml$, obtained by using this method, developed typical C. crocatus fruiting bodies when placed as $20{\mu}l$ spots on agar plates with no nutrient supplementation. The addition of nutrients such as casitone altered or inhibited fruiting body formation. Fruiting body branch formation increased with increasing agar content. Under optimum conditions, the formation of fruiting body structure in C. crocatus KYC2823 was completed within 24 h.

Chondromyces crocatus의 자실체 형성에 대한 정량적 연구를 위하여 필수적인 분산된 세포현탁액 제조방법을 개발하였다. C. crocatus 세포들은 액체에서 서로 응집하는 특성이 있어 정량적 연구가 어렵다. 하지만 3% 한천을 함유한 casitone-yeast extract 평판배지에서 배양한 세포들은 물에 잘 분산되어 분산된 세포현탁액을 제조할 수 있었다. 이렇게 제조한 $2{\times}10^8cells/ml$ 농도의 세포현탁액 $20{\mu}l$를 영양분이 고갈된 평판배지 위에 올려놓고 배양하였을 때 C. crocatus 특유의 자실체를 형성하였다. Casitone과 같은 영양분을 첨가하였을 때는 자실체 형성이 저해되거나 변형되었으며, 한천의 농도가 높을수록 자실체의 가지수가 증가되었다. 조사된 최적조건에서 C. crocatus KYC2823은 24시간 내로 자실체 구조를 완성하였다.

Keywords

References

  1. Cho, K. 2002. Bacterial gliding motility. Kor. J. Microbiol. Biotechnol. 30, 199-205.
  2. Cho, K. and Zusman, D.R. 1999. AsgD, a new two-component regulator required for A-signalling and nutrient sensing during early development of Myxococcus xanthus. Mol. Microbiol. 34, 268-281. https://doi.org/10.1046/j.1365-2958.1999.01594.x
  3. Dawid, W. 2000. Biology and global distribution of myxobacteria in soil. FEMS Microbiol. Rev. 24, 403-427. https://doi.org/10.1111/j.1574-6976.2000.tb00548.x
  4. Dworkin, M. 1962. Nutritional requirements for vegetative growth of Myxococcus xanthus. J. Bacteriol. 84, 250-257.
  5. Grilione, P.L. and Pangborn, J. 1975. Scanning electron microscopy of fruiting body formation by myxobacteria. J. Bacteriol. 124, 1558-1565.
  6. Hagen, D.C., Bretscher, A.P., and Kaiser, D. 1978. Synergism between morphogenetic mutants of Myxococcus xanthus. Dev. Biol. 64, 284-296. https://doi.org/10.1016/0012-1606(78)90079-9
  7. Hemphill, H.E. and Zahler, S.A. 1968. Nutritional induction and suppression of fruiting in Myxococcus xanthus FBa. J. Bacteriol. 95, 1018-1023.
  8. Hesseltine, C.W. and Fennell, D.I. 1955. Growth of Chondromyces crocatus in pure culture. Nature 175, 213-214.
  9. Kaiser, D., Robinson, M., and Kroos, L. 2010. Myxobacteria, polarity, and multicellular morphogenesis. Cold Spring Harb. Perspect. Biol. 2, a000380.
  10. Lee, C., Hyun, H., Kim, D., and Cho, K. 2009. Isolation of Chondromyces crocatus in pure culture. Kor. J. Microbiol. Biotechnol. 37, 316-321.
  11. Mauriello, E.M., T. Mignot, T., Yang, Z., and Zusman, D.R. 2010. Gliding motility revisited: how do the myxobacteria move without flagella? Microbiol. Mol. Biol. Rev. 74, 229-249. https://doi.org/10.1128/MMBR.00043-09
  12. McCurdy, H.D.Jr. 1964. Growth of Chondromyces crocatus in pure culture. Can. J. Microbiol. 10, 935-936. https://doi.org/10.1139/m64-126
  13. Nellis, L.F. and Garner, H.R. 1964. Methods for isolation and purification of Chondromyces. J. Bacteriol. 87, 230-231.
  14. Reichenbach, H. 2005. Myxococcales. pp. 1059-1144. In Brenner, D.J., Krieg, N.R., Staley, J.T., and Garrity, G.M. (eds.), Bergey's Manual of Systematic Bacteriology, 2nd ed. Bergey's Manual Trust, East Lansing, MI, USA.
  15. Shi, W. and Zusman, D.R. 1993. The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc. Natl. Acad. Sci. USA 90, 3378-3382. https://doi.org/10.1073/pnas.90.8.3378
  16. Shimkets, L.J. 1986. Correlation of energy-dependent cell cohesion with social motility in Myxococcus xanthus. J. Bacteriol. 166, 837-841. https://doi.org/10.1128/jb.166.3.837-841.1986
  17. Shimkets, L.J. 1990. Social and developmental biology of the myxobacteria. Microbiol. Rev. 54, 473-501.
  18. Shimkets, L.J., Dworkin, M., and Reichenbach, H. 2006. The myxobacteria. Prokaryotes 7, 31-115.
  19. Wall, D., Kolenbrander, P.E., and Kaiser, D. 1999. The Myxococcus xanthus pilQ (sglA) gene encodes a secretin homolog required for type IV pilus biogenesis, social motility, and development. J. Bacteriol. 181, 24-33.

Cited by

  1. Myxococcus stipitatus의 자실체 형성을 위한 배지 조성 vol.55, pp.2, 2014, https://doi.org/10.7845/kjm.2019.9035