DOI QR코드

DOI QR Code

Relationship between NVOCs Concentration and Korean Red Pine (Pinus densiflora S. et Z.) Forest Environment in Spring Season

봄철 소나무숲의 NVOC 농도와 숲환경과의 상관관계

  • Kim, GeonWoo (Department of Environment & Forest Resources, Chungnam National University) ;
  • Kwon, ChiWon (Department of Environment & Forest Resources, Chungnam National University) ;
  • Yeom, DongGeol (Department of Environment & Forest Resources, Chungnam National University) ;
  • Joung, Dawou (Department of Environment & Forest Resources, Chungnam National University) ;
  • Choi, Yoon Ho (Department of Environment & Forest Resources, Chungnam National University) ;
  • Park, Bum-Jin (Department of Environment & Forest Resources, Chungnam National University)
  • 김건우 (충남대학교 산림환경자원학과) ;
  • 권치원 (충남대학교 산림환경자원학과) ;
  • 염동걸 (충남대학교 산림환경자원학과) ;
  • 정다워 (충남대학교 산림환경자원학과) ;
  • 최윤호 (충남대학교 산림환경자원학과) ;
  • 박범진 (충남대학교 산림환경자원학과)
  • Received : 2014.03.25
  • Accepted : 2014.07.18
  • Published : 2014.09.30

Abstract

This study aimed at a scientific examination of the relationship between NVOCs concentration and the physical environment of red pine forest in spring season. Atmospheric NVOC samples in red pine forest was collected through five trials conducted from March to May 2013, using Tanax-Ta-charged disposable tubes and mini-pumps. At each trial, measurements were taken at three different points in daytime (sunrise, southing and sunset). For maximum accuracy, two tubes were used for each measurement at the same location, and the mean value was used for analysis. Compound analysis on the NVOC samples was done using the HS-SPME method and GC-MS. Analysis of the relationship between NVOC and the physical forest environment found higher concentrations of most substances, including ${\alpha}$-pinene and ${\beta}$-pinene, with higher temperature, dew point, and lower concentrations with higher wind velocity. The findings of this study offer scientific evidence which can inform the creation of 'healing forests' and 'recreational forests' as well as forest environment in general, helping to promote public health and recreational activities.

본 연구는 봄철 소나무숲의 NVOC 농도와 숲의 물리환경과의 상관관계에 대하여 과학적으로 밝히기 위한 목적으로 수행되었다. 소나무숲의 대기중 NVOC의 포집을 위해 2013년 3월부터 2013년 5월까지 총 5회의 실험을 진행하였으며 Tanax-Ta가 충진된 1회용 튜브와 미니펌프를 사용하여 포집하였다. 매회의 실험마다 일중시간동안 총 세 번의 시간(일출, 남중, 일몰)에 측정을 하였으며 오차를 줄이기 위하여 같은 지점에서 두 개의 튜브를 사용하여 측정 후 분석한 평균값을 사용 하였다. 포집된 NVOC 물질 분석은 HS-SPME법을 사용하여 GC-MS로 분석하였다. 봄철 소나무숲의 NVOC 농도와 숲의 물리환경과의 상관관계에 대하여 분석한 결과, ${\alpha}$-pinene, ${\beta}$-pinene 등 대부분의 물질에서 온도, 이슬점이 높아질수록 농도가 높아졌으며 풍속이 클수록 농도가 낮아졌다. 본 연구에서 얻어진 자료들은 치유의 숲, 자연휴양림 조성 및 숲 환경에 대한 과학적인 근거를 제시함으로써 국민들의 건강증진과 여가활동에 유익한 정보로 사용 될 것이라 기대된다.

Keywords

References

  1. Aaltonen, H., Pumpanen, J., Pihlatie, M., Hakola, H., and Hellen, H. 2011. Agricultural and Forest Meteorology 151: 682-691. https://doi.org/10.1016/j.agrformet.2010.12.010
  2. Cerqueira, M.A., Pio, C.A., Gomes, P.A., Matos, J.S., and Nunes, T.V. 2003. Volatile organic compounds in rural atmospheres of central Portugal. The Science of Total Environment 313: 49-60. https://doi.org/10.1016/S0048-9697(03)00250-X
  3. Cho, Y.M., Shin, W.S., Yeoun, P.S., and Lee, H.E. 2011. The influence of forest experience program on children from low income families, sociality and depression. Journal of Korean Institute of Forest Recreation 15(2): 69-75.
  4. Guenther, A., Hewitt, C.N., Erickson, D., Fall, R., and Beron, C. 1995. A global model of natural volatile organic compound emissions. Journal of Geophysical Research 98: 12609-12617.
  5. Guenther, A.B., Monson, R.K., and Fall, R. 1991. Isoprene and monoterpene emission rate variability: Observation with eucalyptus and emission rate algorithm development. Journal of Geophysical Research 96(D6): 10799-10808. https://doi.org/10.1029/91JD00960
  6. Harrison, D., Hunter, M.C., Lewis, A.C., Seakins, P.W., Bonsang, B., Gros, V., Kanakidou, M., Touaty, M., Kavouras, I., Mihalopoulos, N., Stephanou, E., Alves, C., Nunes, T., and Pio, C. 2001. Ambient isoprene and monoterpene concentrations in Greek fir (Abies Borisii-regis) forest. Reconciliation with emissions measurements and effects on measured OH concetrations. Atmospheric Environment 35: 4699-4711. https://doi.org/10.1016/S1352-2310(01)00091-7
  7. Ji, D.Y., Kim, S.Y., and Han, J.S. 2002. A study on the comparison to source profile of the major terpenes from pine tree and korean pine tree. Journal of Korean Society for Atmospheric Environment 18(6): 515-525.
  8. Kaplan, S. and Talbot, J. 1983. Psycho logical benefits of wilderness experience. In I. Altman & J. F. Wohwill(eds.), Human Behavior and Environment 6: 163-203.
  9. Kawakami, K., Kawamoto, M., Nomura, M., Otani, H., Nabiki, T., and Gonda T. 2004. Effects of phytoncides on blood pressure under restraint stress in SHRSP. Clin Exp Pharmacol Physiol 31: S27-S28. https://doi.org/10.1111/j.1440-1681.2004.04102.x
  10. Kesselmeier and Staudt M. 1999. Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. Journal of Atmospheric Chemistry 33: 23-88. https://doi.org/10.1023/A:1006127516791
  11. Kim, J.C., Lim, J.H., Hong, J.Y., Sun, W.Y., Kim, G.J., and Shin, W.S. 2004. A comparison on seasonal NVOCs emissons coniferous trees in Season. Jounal of Korean Society for Atmospheric Environment. pp. 274-275
  12. Li, Q., Morimoto, K., Kobayashi, M., Inagaki, H., Katsumata, M., Hirata, Y., Hirata, K., Suzuki, H., Li, Y., Wakayama, Y., Kawada, T., Park, B.J., Ohira, T., Matsui, N., Kagawa, T., Miyazaki, Y., and Krensky, A.M. 2008. Visiting a forest, but nat a city, increase human natural killer activity and expression of anti-cancer proteins. International Journal of Immunopathology and Pharmacology 21(1): 117-127.
  13. Li, Q., Nakadai, A., Matsushima, H., Miyazaki, Y., Krensky, A.M., Kawada, T., and Morimoto, K. 2006. Phytoncides (wood essential oils) induce human natural killer cell activity. Immunopharmacol Immunotoxicol 28: 319-333. https://doi.org/10.1080/08923970600809439
  14. Ministry of Environment. 2010. Indoor air quality standard method. 24: 17-38.
  15. Owen, S., Boissard, C., Street, R.A., Duckham, S.C., and Hewitt, C.N. 1997. The BEMA-project: Screening of 18 mediterranean plant species for volatile organic compound emission. Atmospheric Environment 31(SI): 101-117. https://doi.org/10.1016/S1352-2310(97)00078-2
  16. Park, B.J., Kim, B.Y., Lim, H.J., Choi, Y.H., Joung, D.W., and Lee, J.W. 2012. The stress reduction effects of forest prenatal education on pregnant women. Institute of Recreation and Landscape Planning 6(1): 21-25.
  17. Park, B.-J. and Miyazaki, Y. 2008. Physiological effects of viewing forest landscapes: Results of field tests in Atsugi city, Japan. Journal of Korean Forest Society 97(6): 634-640.
  18. Trapp, D., Cooke, K.M., Fischer, H., Bonsang, B., Zitzelsberger, R.U., Seuwen, R., Schiller, C., Zenker, T., Parchatka, Nunes, T.V., Pio, C.A., Lewis, A.C., Seakins, P.W., and Pilling, M.J. 2001. Isoprene and its degradation products methyl vinyl ketone, methacrolein and formaldehyde in a eucalyptus. Chemosphere Global Change Science 3: 295-307. https://doi.org/10.1016/S1465-9972(01)00012-5
  19. Ulrich. 1993. Biophilia, biophobia, and natural landscapes. The Biophilia Hypothesis. Island/Shearwater Press, Washington, DC. pp. 73-137.
  20. Yoo, Y., Lee, S.M., Seo, S.C., Choung, J.T., Lee, S.J., Park, S.J., and Park, C.W. 2011. The clinical and immunological effects of forest camp on childhood environmental diseases. Jounal of Korean Institute of Forest Recreation 15(2): 85-93.

Cited by

  1. Effects of Indoor Air Pollutants on Atopic Dermatitis vol.13, pp.12, 2016, https://doi.org/10.3390/ijerph13121220
  2. Characteristics and distribution of terpenes in South Korean forests vol.41, pp.1, 2017, https://doi.org/10.1186/s41610-017-0038-z
  3. 지리산 심원마을 소나무의 Monoterpene 방산 농도 변화 vol.110, pp.1, 2014, https://doi.org/10.14578/jkfs.2021.110.1.13