Abstract
This study investigates the structure and operation of the ITER VS converter and proposes a sequence control method for six series-connected VS converters to reduce reactive power. The operation and the proposed sequence control method are verified through RTDS simulation. The ITER VS converter must supply voltage/current to the superconducting magnets for plasma current vertical stabilization, and the four-quadrant operation must proceed without a zero-current discontinuous section. The operation mode of the VS converter is separated into a 12- and 6-pulse circulating current and transition modes according to the size of the load current. The output voltage of the unit VS converter is limited because of the rated voltage; however, the superconducting coil must increase the operating output voltage. Thus, the VS converter must be connected in a 6-series to provide the required operating output voltage. The output voltage of the VS converters is controlled continuously; however, reactive power is limited within a minimized value of the grid. In this study, the unit converter is compared with converters connected in a 6-series to determine a suitable sequence control method. The output voltage is the same in all cases, but the maximum reactive power is reduced from 100% to 73%. This sequence control method is verified through RTDS simulation.