DOI QR코드

DOI QR Code

Light Conditions and Characteristics of Leaves and Fruit at Different Canopy Positions in Slender-spindle 'Hongro' Apple Trees

세장방추형 '홍로' 사과나무의 수관 부위별 수광상태와 잎 및 과실의 특성

  • Song, Ju-Hee (Jangsu Agricultural Technique Center) ;
  • Kang, In-Kyu (Department of Horticultural Science, Kyungpook National University) ;
  • Choi, Dong Geun (Department of Horticulture, Chonbuk National University)
  • Received : 2013.10.24
  • Accepted : 2014.04.29
  • Published : 2014.09.30

Abstract

For this analysis, canopies of slender-spindle 'Hongro'/M9 apple trees were divided into 4 positions: upper, lower, exterior, and interior parts. The photosynthetic rate was highest in the external part of the upper canopy of the tree, where it was 4.5 times higher than in the internal part of the lower canopy. This difference was closely associated with differences in light penetration based on canopy position. Analysis of leaf growth characteristics showed that the leaves situated in the internal part of the canopy were larger and thinner than those in the external part of the canopy. The difference in leaf thickness was mainly due to thickness of the primary layer of palisade tissues (68.5 and $110.3{\mu}m$ for internal and external leaves, respectively). Fruit weight and quality were closely related to the extent of light penetration. Fruit weight, soluble solid content, and red skin color were higher in the fruits from the external part of the canopy. Thus, fruit maturity was delayed in the internal part of canopy. The fruit skin and wax layer were thicker in fruits from the internal canopy than in those from the external canopy. Therefore, our results indicate a need for improved light penetration in internal parts of the canopy and for split harvesting depending on maturity at different canopy positions.

'홍로'/M.9 세장방추형 수형에서 수관위치에 따른 광환경과 잎과 과실의 특성을 구명하기 위하여 수관을 상부와 하부, 그리고 내부와 외부로 나누어 조사하였다. 수관상단의 외부가 투광량이 가장 높았고, 광합성속도는 수관하단의 내부보다 약 4.5배 높게 나타났다. 잎의 생장은 수관 내부 잎이 외부 잎보다 더 넓고 얇았으며, 잎의 책상조직 첫번째 층의 두께는 수관외부($110.3{\mu}m$)가 수관내부($68.5{\mu}m$)보다 두꺼웠다. 과중, 가용성 고형물 함량 및 착색도는 투광률이 높은 수관외부의 과실이 내부보다 높았다. 과실의 가용성 유리당 함량은 수관외부 과실이 내부보다 높았다. 수관내부의 과실은 숙기가 지연되었다. 과피는 수관내부 과실에서 더 두꺼웠고 왁스층의 발달도 많게 나타났다. 따라서 본 연구결과는 수관내부의 광환경을 개선하기 위한 노력과 수관 부위별로 숙기에 따른 분할 수확이 필요함을 제시하였다.

Keywords

References

  1. Ackermann, J., M. Fischer, and R. Amado. 1992. Changes in sugars, acids, and amino acids during ripening and storage of apples (cv. Glockenapfel). J. Agr. Food Chem. 40:1131-1134. https://doi.org/10.1021/jf00019a008
  2. Auchter, E.C., A.L. Shrader, F.S. Lagasse, and W.W. Aldrich. 1926. The effect of shade on the growth, fruit bud formation, and chemical composition of apple trees. Proc. Amer. Soc. Hort. Sci. 23:368-382.
  3. Barritt, B.H., C.R. Rom, K.R. Guelich, S.R. Drake, and M.A. Dilley. 1991. Light level influences spur quality and canopy development and light interception influence fruit production in apple. HortScience 26:993-999.
  4. Beruter, J. 1985. Sugar accumulation and changes in activities of related enzymes during development of the apple fruit. J. Plant Physiol. 121:331-341. https://doi.org/10.1016/S0176-1617(85)80026-2
  5. Cowart, F.F. 1935. Apple leaf structure as related to position of the leaf upon the shoot and to type of growth. Proc. Amer. Soc. Hort. Sci. 33:145-148.
  6. Doud, D.S. and D.C. Ferree. 1980. Influence of altered light levels on growth and fruiting of mature 'Delicious' apple trees. J. Amer. Soc. Hort. Sci. 105:325-328.
  7. Forshey, C.G. 2000. Training and pruning apple trees. Cornell Cooperation Extension Publication. Info Bulletin #112. http://eap.mcgill.ca/CPTFP_7.htm.
  8. Giuliani, R., F. Nerozzi, E. Magnanini, and L. Colrlli Grappadelli. 1997. Infuluence of environmental and plant factors on canopy photosynthesis and transpiration of apple trees. Tree Physiol. 17:637-645. https://doi.org/10.1093/treephys/17.10.637
  9. Han, S.G. and T.M. Yoon. 2001. Light distribution within the canopy and fruit quality in dwarf apple orchards. J. Kor. Soc. Hort. Sci. 42:78-82.
  10. Jung, S.K. 2002. Effects of tree shape and light penetraion on tree shape and productivity for 'Fuji' apple trees on M. 26 rootstocks. M.A. Diss., Kongju Univ., Gongju, Korea.
  11. Kim, K.R., Y.K. Kim, J.K. Byun, J.B. Kim, and T.M. Yoon. 1996. Development of high density apple orchard system in Korea. Proc. Intl. Symp. Dev. New Apple Orchard System in Kyungbuk, Office of Kyungbuk Province. p. 49-53.
  12. Kim, M.S., J.K, Jeong, H.Y. Kim, S.I. Kwon, H.J. Kwon, B.R. Bark, M.Y. Park, and H.H. Seo. 2003. The growth character of apple tree and orchard mangement. Rural Development Administration, Suwon, Korea. p. 25-60.
  13. Lim, B.S., Y.W. Choi, and N.H. Song. 1993. Effect of plant growth regulator ethephon application on the astringent persimmon (Diospyros kaki L.). RDA J. Agr. Sci. 35:800-805.
  14. Luft, J.H. 1973. Compounding of Luft’s epon embedding medium for use in electron microscopy with reference to anhydride:Epoxide ratio adjustment. Mikroskopie 29:337-342.
  15. Mika, A. and R. Antosqewski. 1972. Effect of leaf position and tree shape on the rate of photosynthesis in the apple tree. Photosynthesica 6:381-386.
  16. Oh, S.D., D.G. Choi, and C.H. Cho. 1997. Effect of different light conditions within canopy on growth and photosynthesis in apple tree. J. Kor. Soc. Hort. Sci. 38:391-395.
  17. Park, M.Y., S.J. Yang, J.K. Park, D.G. Choi, and I.K. Kang. 2007. Influence of the number of the lower scaffold limbs in slender spindle form on the tree growth and development of 'Fuji' apple trees. J. Bio-Environ. Control 16:258-263.
  18. Pavel, E.W. and T.M. Dejong. 1995. Seasonal patterns of nonstructural carbohydrates of apple (Malus pumila Mill.) fruits:Relationship with relative growth rates and contribution to solute potential. J. Hort. Sci. 70:127-134.
  19. Reyes, T., T.A. Nell, J.E. Barrett, and C.A. Conover. 1996. Testing the light acclimatization potential of Chrysalidocarpus iutescens Wendle. HortScience 31:1203-1206.
  20. Seo, B.S. 2010. Characteristics of growth and fruit quality of 'Hongro' apple trees at various altitude in Jangsu, Korea. PhD. Diss., Jeonbuk Natl. Univ., Jeonju, Korea.
  21. Song, K.J., J.H. Hwang, and H.K. Yun. 2003. Changes of soluble sugar and starch concentrations in fruits of apple cultivars differing in maturity. J. Kor. Soc. Hort. Sci. 44:207-210.
  22. Wooge, K.C. and K.A. Barden. 1987. Seasonal changes in specific leaf weight and leaf anatomy of apple. HortScience 22:292-294.
  23. Yamada, H., H. Ohmura, C. Arai, and M. Terui. 1994. Effect of preharvest fruit temperature on ripening, sugars, and watercore occurrence in apples. J. Amer. Soc. Hort. Sci. 119:1208-1214.
  24. Yang, S.J. 2008. Study on high density apple orchard system with M.9 rootstock. PhD. Diss., Kyungpook Natl. Univ., Daegu, Korea.