DOI QR코드

DOI QR Code

Effects of Elevated CO2 Concentration on Leaf Phenology of Quercus acutissima

이산화탄소 농도 증가가 상수리나무 잎의 계절현상에 미치는 영향

  • Seo, Dong-Jin (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Oh, Chang-Young (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Han, Sim-Hee (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Lee, Jae-Cheon (Department of Forest Genetic Resources, Korea Forest Research Institute)
  • 서동진 (국립산림과학원 산림유전자원부) ;
  • 오창영 (국립산림과학원 산림유전자원부) ;
  • 한심희 (국립산림과학원 산림유전자원부) ;
  • 이재천 (국립산림과학원 산림유전자원부)
  • Received : 2014.08.06
  • Accepted : 2014.09.27
  • Published : 2014.09.30

Abstract

Effects of elevated $CO_2$ on leaf phenology of Quercus acutissima were examined using open-top chambers, which had ambient and elevated $CO_2$ concentrations (ambient ${\times}1.4$, ambient ${\times}1.8$). To analyze the effect of chamber, non-treatment block was established near outside of the chambers. In 2013, budburst, leaf unfolding, coloring, and shedding were surveyed, and spring phenology was surveyed in 2014. Thermal sum (base temperature $+5^{\circ}C$) of each phenological event occurred was recorded. In addition, bud samples were collected and analyzed for carbohydrate contents in March 2014. Elevated $CO_2$ concentration advanced budburst and leaf unfolding, and delayed shedding in 2013. However, in 2014, the temperature of the spring season was high, and there was no significant effect of elevated $CO_2$ concentration on spring phenology. Carbohydrates content, such as starch, total non-structural carbohydrate and total soluble sugar, were significantly increased in response to elevated $CO_2$ concentration. It has been proposed that elevated $CO_2$ concentration could extend the growing season of temperate species with increased possibility of frost damage due to early bud opening and leaf unfolding. However, our analysis showed that the increased carbohydrate concentration in bud under elevated $CO_2$ would reduce the possibility of early spring frost damage by acting as cryoprotectant.

대기 이산화탄소 농도 증가가 상수리나무 잎의 생물계절현상에 미치는 영향을 알아보고자 본 연구를 수행하였다. 상부개방형온실을 이용하여 대기 이산화탄소 농도를 높여 처리하였다. 대기 이산화탄소 처리 농도의 설정은 현재 농도, 현재 농도의 1.4배, 현재 농도의 1.8배 등 3 처리구로 하였고, 온실효과에 대한 검정을 위하여 상부개방형온실 외부에 비교구를 설치하였다. 잎의 생물계절현상은 2013년에 동아 파열, 개엽, 단풍, 낙엽에 대하여 각 생물계절현상이 나타나는 일자와 적산온도를 조사하였고, 2014년에는 봄철 계절현상인 동아 파열과 개엽에 대하여 각가의 일자와 적산온도를 조사하였다. 동아 내의 탄수화물 함량 분석을 위하여 2014년 3월에 각 처리구별로 동아를 채취하여 분석하였다. 봄철의 생물계절현상이 연도간에 차이가 나타났는데, 2013년도에는 동아 파열과 개엽 시기가 이산화탄소 처리 농도가 증가함에 따라 빨라지는 것으로 나타났다. 봄철 기온이 높았던 2014년도에는 동아 파열 및 개엽 시기 모두 처리구간에 차이가 나타나지 않았다. 단풍과 낙엽 등 가을철의 생물계절현상은 이산화탄소 처리 농도가 증가함에 따라서 늦어지는 것으로 나타났다. 동아 내의 탄수화물 함량 분석 결과 이산화탄소 처리 농도가 증가함에 따라서 전분, 총 비구조 탄수화물, 총 수용성 당류의 함량이 증가하는 것으로 나타났다. 대기 이산화탄소 농도의 상승은 상수리나무의 개엽을 빠르게 하고 낙엽을 늦추어 전체적인 생육기간을 연장시키게 될 것이다. 봄철의 이른 개엽은 동해피해의 가능성을 높이나, 개엽 시기는 온도에 의한 영향을 크게 받으며, 전년도 이산화탄소 농도 증가에 의하여 동아 내의 전분, 수용성 당 등 탄수화물 함량이 증가되기 때문에 봄철의 동해피해 가능성은 낮을 것으로 판단된다.

Keywords

References

  1. Badeck, F. W., A. Bondeau, K. Bottcher, D. Doktor, W. Lucht, J. Schaber, and S. Sitch, 2004: Responses of spring phenology to climate change. New Physologist 162, 295-309. https://doi.org/10.1111/j.1469-8137.2004.01059.x
  2. Beuker, E., 1994: Adaptation to climatic changes of the timing of bud burst in populations of Pinus sylvestris L. and Picea abies (L.) Karrst. Tree Physiology 14, 961-970. https://doi.org/10.1093/treephys/14.7-8-9.961
  3. Brown, L. R., 1991: Carbon dioxide enrichment accelerates the decline in nutrient status and relative growth rate of Populus tremuloides Michx. seedlings. Tree Physiology 8, 161-173. https://doi.org/10.1093/treephys/8.2.161
  4. Cannell, M. G. R., 1990: Modelling the phenology of trees. Silva Carelica 15, 11-27.
  5. Cannell, M. G. R., and R. I. Smith, 1986: Climatic warming, spring budburst and frost damage on trees. Journal of Applied Ecology 23, 177-191. https://doi.org/10.2307/2403090
  6. Chen, W. J., T. A. Black, P. C. Yang, A. G. Barr, H. H. Neumann, Z. Blanken, M. D. Novak, J. Eley, and R. J. Ketler, 1999: Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest. Global Change Biology 4, 41-53.
  7. Haggerty, B. P., and S. J. Mazer, 2008: The Phenology Handbook. https://www.usanpn.org/ phenologyhandbook.
  8. Jach, M. E., and R. Ceulemans, 1999: Effects of elevated atmospheric $CO_{2}$ on phenology, growth and crown structure of Scots pine (Pinus sylvestris) seedlings after two years of exposure in the field. Tree Physiology 19, 289-300. https://doi.org/10.1093/treephys/19.4-5.289
  9. Jach, M. E., R. Ceulemans, and M. B. Murray, 2001: Impacts of greenhouse gases on the phenology of forest trees. The Impact of Carbon Dioxide and Other Greenhouse Gases on Forest Ecosystems, D. F. Karnosky, R. Ceulemans, G. E. Scarascia-Mugnozza and J. L. Innes (Eds.), Wallingford, CABI Press, 193-235.
  10. Karnosky, D. F., 2003: Impacts of elevated atmospheric $CO_{2}$ on forest trees and forest ecosystems: knowledge gaps. Environment International 29, 161-169. https://doi.org/10.1016/S0160-4120(02)00159-9
  11. Karnosky, D. F., D. R. Zak, K. S. Pregitzer, C. S. Awmack, J. G. Bockheim, R. E. Dickson, G. R. Hendrey, G. E. Host, J. S. King, B. J. Kopper, E. L. Kruger, M. E. Kubiske, R. L. Lindroth, W. J. Mattson, E. P. Mcdonald, A. Noormets, E. Oksanen, W. F. J. Parsons, K. E. Percy, G. K. Podila, D. E. Riemenschneider, P. Sharma, R. Thakur, A. Sober, J. Sober, W. S. Jones, S. Anttonen, E. Vapaavuori, B. Mankovska, W. Heilman, and J. G. Isebrands, 2003: Tropospheric $O_{3}$ moderates responses of temperate hardwood forests to elevated $CO_{2}$: a synthesis of molecular to ecosystem results from the Aspen FACE project. Functional Ecology 17, 289-304. https://doi.org/10.1046/j.1365-2435.2003.00733.x
  12. Koike, T., 1995: Effects of $CO_{2}$ in interaction with temperature and soil fertility on the foliar phenology of alder, birch, and maple seedlings. Canadian Journal of Botany 73, 149-157. https://doi.org/10.1139/b95-018
  13. Lechowicz, M. J., 1995: Seasonality of flowering and fruiting in temperate forest trees. Canadian Journal of Botany 73, 175-182. https://doi.org/10.1139/b95-021
  14. Lee, K. J., 2012. Tree Physiology (3rd ed.). Seoul University Press, Seoul, 514pp.
  15. Lee, J. C., D. H. Kim, G. N. Kim, P. G. Kim, and S. H. Han, 2012: Long-term climate change research facility for trees: $CO_{2}$-enriched open top chamber system. Korean Journal of Agricultural and Forest Meteology 14, 19-27. https://doi.org/10.5532/KJAFM.2012.14.1.019
  16. Loustau, D., J. Ogee, E. Dufrene, M. Deque, J-L. Dupouey, V. Badeau, N. Viovy, P. Ciais, M-L. Desprez-Loustau, A. Roques, I. Chuine, and F. Mouillot, 2007: Impacts of climate change on temperate forests and interaction with management. Forest and climate change, P.H. Freer- Smith, M. S. J. Broadmeadow, and J. M. Lynch (Eds) Cab International, Wallingford, 143-150.
  17. Menzel, A., 2000: Trends in phonological phases in Europe between 1951 and 1996. International Journal of Biometeorology 44, 76-81. https://doi.org/10.1007/s004840000054
  18. Morin, X., J. Roy, L. Sonie, and I. Chuine, 2010: Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytologist 186, 900-910. https://doi.org/10.1111/j.1469-8137.2010.03252.x
  19. Mousseau, M. and H. Z. Enoch, 1989: Carbon dioxide enrichment reduces shot growth in seet chestnut seedlings (Castanea sativa Mill.). Plant, Cell and Environment 12, 927-934. https://doi.org/10.1111/j.1365-3040.1989.tb01972.x
  20. Murray, M. B., M. G. R. Cannell, and R. I. Smith, 1989: Date of bud burst of fifteen tree species in Britain following climatic warming. Journal of Applied Ecology 26, 693-700. https://doi.org/10.2307/2404093
  21. Murray, M. B., R. I. Smith, I. D. Leith, D. Fowler, H. S. J. Lee, A. D. Friend, and P. G. Jarvis, 1994: Effects of elevated $CO_{2}$, nutrition and climatic warming on bud phenology in Sitka spruce (Picea sitchensis) and their impact on the risk of frost damage. Tree Physiology 14, 691-706. https://doi.org/10.1093/treephys/14.7-8-9.691
  22. Norby, R. J., J. S. Hartz-Rubin, and M. J. Verbrugge, 2003: Phenological responses in maple to experimental atmospheric warming and $CO_{2}$ enrichment. Global Change Biology 9, 1279-1801.
  23. Ogren, E., T. Nilsson, and L. G. Sundblad, 1997: Relationship between respiratory depletion of sugars and loss of cold hardiness in coniferous seedlings over wintering at raised temperatures: indications of different sensitivities of spruce and pine. Plant, Cell and Environment 20, 247-53. https://doi.org/10.1046/j.1365-3040.1997.d01-56.x
  24. Paynter, V. A., J. C. Reardon, and V. B. Shelbure, 1991: Carbohydrate changes in shortleaf pine (Pinus echinata) needles exposed to acid rain and ozone. Canadian Journal of Forest Research 21, 110-116.
  25. Repo, T. H. Hanninen, and S. Kellomaki, 1996: The effects of long-term elevation of air temperature and $CO_{2}$ on the frost hardiness of Scots pine. Plant, Cell and Environment 19, 209-216. https://doi.org/10.1111/j.1365-3040.1996.tb00242.x
  26. Riikonen, J., K. Kets, J. Darbah, E. Oksanen, A. Sober, E. Vapaavuori, M. E. Kubiske, N. Nelson, and D. F. Karnosky, 2008: Carbon gain and bud physiology in Populus tremuloides and Betula papyrifera grown under longterm exposure to elevated concentrations of $CO_{2}$ and $O_{3}$. Tree Physiology 28, 243-254. https://doi.org/10.1093/treephys/28.2.243
  27. Sigurdsson, B. D., 2001: Elevated [$CO_{2}$] and nutrient status modified leaf phenology and growth rhythm of young Populus trichocarpa trees in a 3-year field study. Trees 15, 403-413. https://doi.org/10.1007/s004680100121
  28. Taschler, D., B. Beikircher, and G. Neuner, 2004: Frost resistance and ice nucleation in leaves of five woody timberline species measured in situ during shoot expansion. Tree Physiology 24, 331-337. https://doi.org/10.1093/treephys/24.3.331
  29. Walther, G-R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J-M. Fromentin, O. Hoegh-Guldberg, and F. Bairlein, 2002: Ecological responses to recent climate change. Nature 416, 389-395. https://doi.org/10.1038/416389a
  30. White, M. A., and R. R. Nemani, 2003: Canopy duration has little influence on annual carbon storage in the deciduous broad leaf forest. Global Change Biology 9, 967-972. https://doi.org/10.1046/j.1365-2486.2003.00585.x

Cited by

  1. Does the increase in ambient CO2 concentration elevate allergy risks posed by oak pollen? vol.62, pp.9, 2018, https://doi.org/10.1007/s00484-018-1558-7