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CURVED BOUNDARY TREATMENT OF THE LATTICE BOLTZMANN METHOD
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Slip flow 해석을 위한 격자볼츠만 방법의 곡면처리기법
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The lattice Boltzmann (LB) method has been used to simulate rarefied gas flows in a micro-system as an 
alternative tool. However, previous results were mainly focused on a simple geometry with flat walls because the LB 
method is modeled on uniform Cartesian lattices. When previous boundary conditions for the microflows are applied 
to curved walls, the use of them requires approximation of the curved boundary by a series of stair steps, and 
introduces additional errors. For macroflows, no-slip curved wall boundary treatments have been developed 
remarkably in order to overcome these limits. However, the investigations for the slip curved wall boundary have 
rarely been performed for microflows. In this work, a curved boundary treatment of the LB method for a slip flow 
has been introduced. The results of the LB method for 2D microchannel and 3D microtube flows are in excellent 
agreement with the analytical solutions.
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1. Introduction

The lattice Boltzmann (LB) method has been used 
widely to simulate fluid flows as an alternative tool. 
Recently, the LB method has been used to simulate 
rarefied gas flows in microsystems successfully. In a 
micron-sized system, the molecular mean free path of fluid 
molecules may be about the same order of magnitude as 
the typical geometric dimension of the device. The effect 
of the mean free path can be characterized by the 
Knudsen number Kn, which is the ratio of the mean free 
path to the characteristic length. For Kn greater than 0.01, 
the slip at the solid wall becomes an important flow 
feature.

Because the boundary treatments influence the accuracy 

and stability, developing accurate and efficient boundary 
condition for the LB simulations has become one of the 
most interesting subjects in many engineering and 
scientific applications. However, while the curved boundary 
treatments of the LB simulations for macroflows have 
been developed remarkably and are popularly used to 
fulfill no-slip on the wall[1-5], the investigations for the 
microflows have been performed much less than those for 
the macroflows. Szalmás[6] presented a slip-flow boundary 
condition for straight walls placed at an arbitrary position 
combining an interpolation method and a simple slip 
boundary condition. Watari[7] studied a rotational slip flow 
in coaxial cylinders by using multi-speed finite-difference 
LB models and adopting the cylindrical coordinate system. 
His FDLBM model with 24 directions showed accurate 
results even at large Kn. However, finding an arbitrary 
curved boundary treatment of LB method for a slip flow 
is still a challenging problem.

The remainder of this paper is organized as follows. 
Sec. 2 briefly reviews the LB method for the slip flow 
simulations. In Sec. 3, the description about a curved 
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boundary treatment for the slip flow is presented. Sec. 4 
is devoted to the comparison of the results of the LB 
method with analytical solutions for 2D microchannel 
flows, which have an arbitrarily positioned wall between 
the fluid and wall nodes, and 3D microtube flows. The 
conclusion is given in Sec. 5.

2. Lattice Boltzmann Method

For a flow without an external force, the following 
lattice Boltzmann equation is available.








(1)

where f is the particle distribution function;   is the 
microscopic velocity; and  is the relaxation time. The 
equilibrium distribution function is given by
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where t is a weighting factor;  is the density of the 
system;   is the macroscopic velocity; and cs is the speed 
of sound. The square lattice (D2Q9) and 3D 19-velocity 
(D3Q19) LBM models are used for the 2D and 3D 
simulations, respectively[8]. The macroscopic density, 
kinematic viscosity, and momentum are recovered by

 

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

. (3)

For rarefied gas simulations with the LB method, the 
relaxation time, , needs to be related to Kn. From the 
kinetic theory, it can be assumed that the gas molecules 
represented by the particle distribution functions travel the 
distance of the lattice mean-free path l with the mean 
thermal speed defined as  , while relaxing 
to their equilibrium state in the relaxation time . The 
mean thermal speed   can be represented with the lattice 
velocity c which depends on the lattice model[8], e.g., 
   for D2Q9 and D3Q19 models.
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Therefore, the Knudsen number can be expressed as 
follows[9]: 
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where H is the characteristic length, which is either the 
channel height or the radius of a tube.

3. Curved boundary treatment for the slip flow

For a slip boundary condition of the LB method, Lee 
and Lin[10] used the equilibrium wall boundary condition 
with the assumption that reflection of molecules impinging 
on the wall is diffuse so that molecules reach equilibrium 
at the wall during the relaxation time. Therefore, the 
equilibrium distribution function of Eq. (2) with the 
density and velocity at the wall is used for the particle 
distribution function at the boundary node. When it is 
applied to the rarefied gas flow simulation, the results are 
in excellent agreement with the analytic solutions. 
However, wall surfaces are always located halfway 
between two grid points for the second-order accuracy. 
Therefore, for a curved geometry, Lee and Lin’s boundary 
condition requires the boundary to be approximated by a 
series of stair steps, and a curved boundary treatment 
needs to be proposed to overcome that shortcoming.

To use the concept of the equilibrium wall boundary 
for a curved boundary, it is necessary to consider the 
above sentence, "wall surfaces are always located halfway 
between two grid points”, from a different point of view, 
i.e., we can put two imaginary grid points half lattice 
spacing apart from the wall surface in opposite directions. 
One point may be located in the fluid side, and the other 
in the wall side. Among them, we only need to know the 
information of the particle distribution function at the grid 
point in the wall side to obtain the particle distribution 
function at the real boundary node, and it can be easily 
calculated from Eq. (2) fortunately. With this intuition, 
deriving a curved boundary treatment for a slip flow can 
be started by putting an imaginary wall node () at the 
position of 0.5x apart from the wall surface (see Fig. 1), 
and assigning the equilibrium distribution function to the 
particle distribution function at , i.e., 
  

  .  is the surface velocity, and 
 is the density at . As an approximation of , the 
density at the location of boundary node () can be 
used. Therefore, the particle distribution function at  
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Fig. 1 1D lattice distribution and wall surface: rF is the outer most 
fluid node; rW is the imaginary wall node which can be 
located half lattice spacing apart from the wall surface; and
rB is the boundary node

can be approximated as ≈
  .

The particle distribution function of the boundary, 
 , can then be obtained by interpolation/ 
extrapolation using the information in the surrounding 
nodes,  ,  , and as follows:

  (6)

where A, B and C are constants related to the 
interpolation/ extrapolation method. When linear 
interpolation/ extrapolation is applied,

∆
  ∆∆
  

(7)

where  is the fraction of the intersected link in the fluid 
region, which can be defined as follows: 

∆≡


(8)

4. Numerical simulation 

4.1 Microchannel flow

The present curved boundary condition for the slip flow 
is applied for the simulation of a channel flow. The 2D 
channel, which has straight walls placed at an arbitrary 
position between the fluid node and wall node, is 
considered. 

The analytic solution of fully developed velocity profile 
for the isothermal flow between two parallel plates can be 
deduced from the Navier-Stokes equation using the slip 
boundary condition. When the second-order slip model and 
fully diffused walls are considered, the slip velocities are
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
 



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
 for the lower wall, (9)

and

 


 





 for the upper wall, (10)

where us and n are the slip velocity and wall normal 
coordinate. For a flat wall, Hadjiconstantinou[11] has 
proposed slip coefficients =1.11 and =0.61 from the 
accurate numerical solutions of the Boltzmann equation for 
a hard sphere gas.

Under the assumption of a long channel, the following 
analytical solutions can be deduced with Eq. (9) and Eq. (10).
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 (11)

 


 ×ln  (12)

where  , normalized pressure with the outlet 

pressure;   , the coordinate normalized with the 
channel length; and  a constant such that  .

To compare the results using presented boundary 
condition with those of previous curved boundary 
treatments[2,3], which have been used for macroflows, the 
gas flows in a 2D long microchannel, whose length and 
height are L and H, are simulated. The unknown particle 
distribution functions at the inlet and outlet are calculated 
by second-order extrapolation of those adjacent to the 
boundary nodes. Following the extrapolation, the calculated 
densities at the inlet and outlet are rescaled to make the 
average density across the inlet and outlet boundary nodes 
the same as the prescribed density.

Fig. 2 shows the results for Kno=0.05 compared with 
the analytical solutions of Eq. (11) and Eq. (12). The grid 
size for H is restricted to 30x, and L/H=80 is used in 
order to investigate the compressibility and rarefaction 
effects on a sufficiently long micro-channel flow. The 
channel height, H, can be presented as  
∆, where NH is the number of lattice 
sites, and  is fixed to 1 because the previous boundary 
treatment becomes simpler and gives stable results when  
is greater than 0.75[2,3]. For all calculations, Pi/Po is set 
to 2.0. The nonlinearity of pressure, i.e. deviation of the 
pressure from the linear pressure distribution, (P 
Pincomp), is normalized by the outlet pressure, Po, and the 



80 / J. Comput. Fluids Eng. N.G. Jeong

x/L

(P
-P

in
co
m
p
)/
P
o

0 0.25 0.5 0.75 1
0

0.02

0.04

0.06

0.08

0.1
Analytic sol. (Hadji.'s 2nd order)
Guo et al.
Mei et al.
Present study

Kno=0.05

(a) Pressure

x/L

u
s/
U
o

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

Analytic sol. (Hadji.'s 2nd order)
Guo et al.
Mei et al.
Present study

Kno=0.05

(b) Slip velocity

Fig. 2 Nonlinearity of pressure and slip velocity distributions for 
Kno=0.05 at Pi/Po=2.0, H=30x, and L/H=80

stream direction, x, is normalized by the channel length. 
Slip velocities are normalized by the outlet centerline 
velocity Uo. For the present boundary treatment, the results 
are in excellent agreement with the analytical solutions, 
while the results of curved boundary treatments for 
macroflow deviate much from them.

In order to investigate the effect of variation of  on 
the results, simulations of the gas flow in an infinitely 
long microchannel are carried out. To mimic the flow, a 
periodic microchannel flow driven by a constant external 
pressure gradient is considered. In the presence of a body 
force, the LB equation must be modified to account for 
the force by adding an additional term to Eq. (1) as 
follows[12].

        


    (13)
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Fig. 3 Velocity profiles of microchannel flows for the cases of 
=0, 0.5, and 1
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Fig. 4 Comparison of non-dimensional velocity distribution in a 
microchannel with the analytical solution
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For the external pressure gradient,   is 
applied.

Fig. 3 shows the velocity profiles along the channel 
height. The channel height, H, and external pressure 
gradient, Fx, are 20x and 0.001. The results of =0, 0.5, 
1 should be in exact agreement with one another because 
H and Fx are fixed. For the cases of Kn=0.05 and 0.1, 
the profiles are seen to be independent on , which 
shows the boundary condition is functioning properly. In 
Fig. 4, the results of the analytical solution are compared 
with those of present study. The values of  from 0.2 to 
0.8 in increments of 0.2 are used. The velocity profiles 
are non-dimensionalized by the mean velocity Um, which 
can be presented analytically as
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(a) Flat wall (b) Curved wall

Fig. 5 Lattice distribution with arbitrary  near  a flat wall and  a 
curved wall
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
. (14)

The results of the LB method are in excellent 
agreement with the analytical solution, and the symbols 
representing the cases of =0.2~0.8 lie on the same 
curves.

4.2 Microtube flow

Poiseuille flow in a microtube, which has circular cross 
section, is considered for 3D simulation with a curved 
geometry. For the channel flow,  is fixed as a certain 
value. In the tube flow, however,  varies along the wall 
boundary, and sometimes it may has different value 
according to the direction of discrete velocity even on the 
same wall node (see Fig. 5). 

Therefore, a microtube flow is a more serious problem 
in achieving accurate results using the LB method under 
uniform Cartesian lattices. 

The velocity profile for the microtube is

 
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where dP/dx is the pressure gradient in the axial direction, 
R is a radius of a tube, and C is a constant, which is 
determined from the slip flow boundary condition at the 
wall. In contrast to the case of channel flow, there is a 
lack of precise experimental data and appropriate slip 
model in the microtube flow. Weng et al.[13] presented 
following slip model for the microtube flow,
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where a, b, c and d are coefficients obtained by 
comparing the solutions of linearized Boltzmann 
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Fig. 6 Calculation domain in a cross section of a tube. The fluid 
and wall regions are distinguished by white and black 
colors, respectively. The initial origin is (y,z)=(0,0) and 
marked by a cross

equation[14]: a=0.49; b=1.28; c=-1.0669; and d=-0.003. 
The Knudsen number is defined as Kn=l/R for the tube 
flow.

When the slip model is considered, the velocity 
distribution can be obtained from Eq. (15) and Eq. (16), 
i.e.,
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Fig. 6 shows the calculation domain in a cross section 
of a tube indicating the fluid and wall regions with white 
and black colors, respectively. The initial origin is located 
at the coordinate of (y,z)=(0,0).

The results for R=20x and Kn=0.1 are shown in Fig. 
7. The origin is varied from (y,z)=(0,0) to (y,z)=(0,0.5x), 
while the tube radius is kept as R=20x. The velocity 
distribution is normalized by the mean velocity Um as 
follows:
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(18)

In principle, moving the origin must not influence the 
velocity profile, and it does not seem to affect the results 
when the present boundary condition is used. However, 
noticeable deviation can be captured in the figure for the 
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Fig. 7 Non-dimensional velocity profiles for microtube flows with 
various origin, (y,z)=(0,0), (0,0.25x), and (0,0.5x): 
Calculation results using Lee and Lin’s boundary and 
present curved boundary condition

case of Lee and Lin’s boundary condition. Fig. 8 shows 
the velocity contours in a cross section of the tube. A 
closer look of the velocity contours reveals that Lee and 
Lin’s boundary condition creates some wiggled area near 
the wall. When adapted the present boundary condition, 
however, the degree of wiggling is apparently decreased. 

In Fig. 9, the non-dimensional velocity distribution is 
compared with the results of the analytical solution of Eq. 
(16) and the linearized Boltzmann equation[15]. It shows 
that the solution of LB method with present curved 
boundary condition is in excellent agreement with the 
analytic solution. When it is compared with the result of 
the linearized Boltzmann equation, the LB solution shows 

(a) Lee and Lin’s boundary condition

(b) Present curved boundary condition

Fig. 8 Velocity contours in the cross section of a microtube: 
Calculation results using Lee and Lin’s boundary, and 
present curved boundary condition

excellent agreement except only near the wall. The 
discrepancy between the results at the wall comes from 
the Knudsen layer effect. The Knudsen layer is the kinetic 
boundary layer as a gas flows over a solid wall, and it 
becomes significant to capture the gas motion for a 
rarefied or micro gas flow. It is known that the mean free 
path of gas molecules in the Knudsen layer is smaller 
than the bulk mean free path. This problem cannot be 
solved by changing boundary condition.

To consider the Knudsen layer effect, the local 
relaxation time should be determined by introducing the 
local mean free path. For a case of flat plate wall, several 
researchers have obtained good results by adopting the 
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Fig. 9 Comparison of non-dimensional velocity distribution in a 
microtube with the analytical solution and the simulation 
results of the linearized Boltzmann equation
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Fig. 10 The effect of grid size across the tube radius on the 
velocity distribution for Kn=0.1

local relaxation time, but for a case of microtube, it still 
remains as a challenging topic. The grid sensitivity test is 
shown in Fig. 10. For the calculations, four refined grids 
(R=10x, 20x, 30x, and 40x) and Kn=0.1 are used. It 
is seen that the accuracy of the solutions is essentially 
independent of grid size.

Finally, Fig. 11 compares the velocity profiles from the 
present LB method with the analytical solutions of Weng 
et al.[13] for various Kn. The tube radius is fixed as 
R=20x ,and Kn=0.025, 0.05, and 0.1 are considered. For 
all calculations, the symbols representing the LB results 
are exactly located on the lines of analytical solutions. 
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Fig. 11 Comparison of non-dimensional velocity distribution in a 
microtube with the analytical solution for various Kn

5. Conclusion

In this work, a curved boundary treatment for the slip 
flow in the LB method has been introduced based on the 
idea that a virtual wall node can be located half lattice 
spacing apart from the wall surface. For a comparison of 
the results of the LB method with analytical solutions, 2D 
microchannel flows, which have an arbitrarily positioned 
wall between the fluid and wall nodes, and 3D microtube, 
which has circular cross section, flows are considered. It 
is found that the proposed boundary treatment can be 
applied successfully for simulations with curved geometry. 
The simulation results using the treatment are essentially 
independent of the grid size. The application method of 
the treatment is very simple. By using this treatment, 
therefore, it is expected to fulfill the slip flow simulation 
with complex and arbitrary geometries with ease.
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