## An Antibacterial 9,11-Secosterol from a Marine Sponge Ircinia sp.

Inho Yang,<sup>†,a</sup> Hyukjae Choi,<sup>‡,a</sup> Dong Hwan Won,<sup>†</sup> Sang-Jip Nam,<sup>§,\*</sup> and Heonjoong Kang<sup>†,#,\*</sup>

<sup>†</sup>Center for Marine Natural Products and Drug Discovery, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 151-747, Korea

<sup>‡</sup>College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Korea

<sup>§</sup>Department of Chemistry and Nano Science, Global Top5 Program, Ewha Womans University, Seoul 120-750, Korea

\*E-mail: sjnam@ewha.ac.kr

 ${}^{\#}Research$  Institute of Oceanography, Seoul National University, NS-80, Seoul 151-747, Korea.  ${}^{*}E$ -mail: hjkang@smu.ac.kr

Received June 2, 2014, Accepted July 21, 2014

Key Words : Antibacterial, Secosterol, Marine, Sponge

Marine sponges are a rich source of structurally diverse natural products and about 35% of marine natural products have been found from this chemically rich phylum of marine organisms.<sup>1</sup> Many of the sponge metabolites have been reported as potent cytotoxins against cancer cell lines and several of them were used as a lead of FDA approved drugs such as Cytosar-U<sup>®</sup>, and Halaven<sup>®</sup>.<sup>2</sup> A number of antibacterial compounds have also been reported from the marine sponge-derived metabolites including discorhabdin Z,<sup>3</sup> agelasine D,<sup>4</sup> 7,20-diisocyanoadociane,<sup>5</sup> motualevic acid F.<sup>6</sup> In this regard, we have been investigating the anti-bacterial compounds from extracts of Korean marine sponges. An extract of a marine sponge in the genus of *Ircinia* showed antibacterial activities and its bioactive constituents have been investigated.

The genus *Ircinia* has been known as a rich source of biologically active natural products including antibacterial compounds,<sup>7,8</sup> cytotoxin,<sup>9</sup> ichthyotoxin,<sup>10</sup> analgesic compound,<sup>11,12</sup> multidrug resistance modulator,<sup>13</sup> thrombin inhibitor,<sup>14</sup> angiotensin converting enzyme/aldose reductase inhibitor,<sup>15</sup> and inosine monophosphate dehydrogenase inhibitor.<sup>16,17</sup>

In particular, this genus of marine sponge has been known to be extremely rich in terpenes, mainly furanoterpenes such as ircinin-1,7 variabilin,<sup>10</sup> fasciculatin,<sup>16</sup> and strobilinin.<sup>18</sup> In addition, several hydroquinones,<sup>11,19</sup> chromans,<sup>20,21</sup> and sterols<sup>22-24</sup> have been reported from the genus *Ircinia*. However, secosterol has not been reported from the organism in this genus. Herein, we report the structure of a unprecedented secosterol with the 2-ene-1,4-dione as well as its antibacterial activity.



Figure 1. Chemical structure of 1.

<sup>a</sup>These authors contributed equally to this work.

The molecular formula of 1 was deduced as  $C_{27}H_{44}O_5$ , based on the analysis of HRFABMS data (a pseudomolecular ion peak at m/z 449.3271 [M+H]<sup>+</sup>) and on the interpretation of <sup>13</sup>C NMR data. The <sup>1</sup>H NMR spectrum of 1 displayed an oxygenated methine proton [ $\delta$  4.04 (m)], an olefinic proton [ $\delta$  6.49 (br s)], and one downfielded methylene protons [ $\delta$  3.84 (m), 3.70 (m)]. The <sup>1</sup>H NMR spectrum also showed two methyl singlets [ $\delta$  1.23, 0.70] and three methyl doublets [ $\delta$  0.97 (d, J = 6.6 Hz), 0.88 (d, J = 2.3 Hz), 0.86 (d, J = 2.3 Hz)]. The <sup>13</sup>C NMR and HSQC spectra revealed five methyl, ten methylene, six methine, and six fully-substituted carbons. The 27 carbons, five methyl protons, and an oxygenated methine proton are characteristic of a cholesterol carbon skeleton. Furthermore, <sup>1</sup>H NMR signals of an olefinic proton  $\delta$  6.49 (s, 1H), oxymethylene protons [ $\delta$  3.70 (m, 1H), δ 3.84 (m, 1H)], a downfield proton [δ 3.52 (dd, 1H, J = 11.0, 8.5 Hz)], and five methyls [ $\delta 0.70$  (s, 3H),  $\delta$ 1.23 (s, 3H),  $\delta$  0.97 (d, 3H, J = 6.6 Hz),  $\delta$  0.88 (d, 3H, J = 6.6Hz),  $\delta 0.86$  (d, 3H, J = 6.6 Hz)] suggested that 1 was a 9,11secosterol.

Interpretation of 2D NMR spectroscopic data permitted the structure assignment of **1**. Analysis of COSY spectroscopic data of **1** revealed three fragments (a, b, and c) as shown in Figure 2. In addition, the carbon chemical shifts of C-6 ( $\delta$  197.5), C-7 ( $\delta$  134.4), C-8 ( $\delta$  152.1), and C-9 ( $\delta$ 203.1), and the HMBC correlations from an olefinic proton H-7 to carbons C-6, C-8, and C-9 supported the construction of an ene-dione moiety.

The connectivity of A/B ring including the fragment a and the ene-dione moiety for **1** was secured from HMBC correlations. The long-range HMBC correlations from H-19 to carbons C-1, C-5, C-9, and C-10, and from H-4 to carbons



Figure 2. COSY and key HMBC correlations of 1.

## Notes

C-2, C-5, and C-10, and from H-7 to the carbon C-5 allowed the A/B ring connectivity. The fragments b and c were also connected from the interpretation of HMBC correlations. A two-bond HMBC correlation from a methyl singlet proton H-18 to a carbon C-13, and three-bond HMBC correlations from H-18 to carbons C-12, C-17 permitted the C-12/C-13/ C-17 connectivity. Lastly, the establishment of C-8/C-14 attachment based on the interpretation of three-bond HMBC correlations from the olefinic proton H-7 to a carbon C-14, and from the methyl singlet proton H-18 to a carbon C-14 allowed the completion of structure assignment of **1**.

The relative stereochemistry of the side chain and rings of 1 was identical to that of reported secosterols, which was determined by comparison with NMR data of known

Table 1. NMR spectroscopic data of 1<sup>*a*</sup> (CDCl<sub>3</sub>)

| No.  | $\delta_C, m^b$ | $\delta_{\rm H}$ , m, $J$ (Hz)              | COSY       | HMBC (10 Hz)            |
|------|-----------------|---------------------------------------------|------------|-------------------------|
| 1    | 25.9, t         | 1.77 m<br>2.21 dt (11.2, 3.7)               | 2          | 3, 5, 10, 19            |
| 2    | 29.8, t         | 1.55 m<br>2.00 m                            | 1,3        |                         |
| 3    | 66.6, d         | 4.04 m                                      | 2,4        |                         |
| 4    | 35.6, t         | 1.77 dd (11.2, 11.1)<br>2.16 dd (11.2, 3.3) | 3          | 2, 5, 10                |
| 5    | 80.5, s         |                                             |            |                         |
| 6    | 197.5, s        |                                             |            |                         |
| 7    | 134.4, d        | 6.49, s                                     |            | 5, 6, 8, 9, 14          |
| 8    | 152.1, s        |                                             |            |                         |
| 9    | 203.1, s        |                                             |            |                         |
| 10   | 52.1, s         |                                             |            |                         |
| 11   | 59.9, t         | 3.70 m                                      | 12         |                         |
|      |                 | 3.84 m                                      |            |                         |
| 12   | 41.1, t         | 1.11 m                                      | 11         |                         |
|      |                 | 1.73 m                                      |            |                         |
| 13   | 47.5, s         |                                             |            |                         |
| 14   | 43.9, d         | 3.52 dd (11.0, 8.5)                         | 15         | 7, 8, 9, 12, 13, 15, 18 |
| 15   | 26.3, t         | 1.75 m                                      | 14, 16     |                         |
|      |                 | 1.84 m                                      |            |                         |
| 16   | 26.6, t         | 1.68 m<br>1.75 m                            | 15, 17     |                         |
| 17   | 50.1, d         | 1.73 m                                      | 16, 20     |                         |
| 18   | 17.7, q         | 0.70 s                                      |            | 12, 13, 14, 17          |
| 19   | 20.6, q         | 1.23 s                                      |            | 1, 5, 9, 10             |
| 20   | 34.5, d         | 1.41 m                                      | 17, 21, 22 | 2                       |
| 21   | 18.8, q         | 0.97 d (6.6)                                | 20         | 17, 20, 22              |
| 22   | 35.6, t         | 0.99 m                                      | 20, 23     | 24                      |
|      |                 | 1.35 m                                      |            |                         |
| 23   | 24.4, t         | 1.15 m                                      | 22, 24     |                         |
|      |                 | 1.35 m                                      |            |                         |
| 24   | 39.4, t         | 1.13 m                                      | 23, 25     |                         |
|      |                 | 1.15 m                                      |            |                         |
| 25   | 27.9, d         | 1.51 m                                      | 24, 26, 27 | 723                     |
| 26   | 22.5, q         | 0.86 d (6.6)                                | 25         | 24, 25, 27              |
| 27   | 22.7, q         | 0.88 d (6.6)                                | 25         | 24, 25, 26              |
| 5-OH |                 | 2.36 br s                                   |            |                         |

<sup>a</sup>600 MHz for <sup>1</sup>H NMR and 150 MHz for <sup>13</sup>C NMR. <sup>b</sup>Multiplicity was determined by the analysis of 2D NMR spectroscopic data.

| Strain                            | <b>1</b> <sup><i>a</i></sup><br>(IC <sub>50</sub> , μg/mL) | Gentamicin |
|-----------------------------------|------------------------------------------------------------|------------|
| S. epidermidis ATCC 12228         | 25                                                         | 0.2        |
| Micrococcus lutes ATCC 9341       | 3.1                                                        | 3.1        |
| Bacillus subtilis ATCC 6633       | 25                                                         | 0.2        |
| Staphylococcus aureus ATCC 65381  | > 200                                                      | 0.2        |
| Escherichia coli ATCC 11775       | > 200                                                      | 0.8        |
| Salmonella typhimurium ATCC 14028 | > 200                                                      | 1.6        |
| Klebsiella pneumonia ATCC 4352    | > 200                                                      | 0.8        |

<sup>a</sup>Each experiment was repeated more than three times.

secosterols and by interpretation of NOESY correlations.<sup>25,26</sup> Briefly, NOESY correlations [H-7/H-14, H-14/H-12, H-12/ H-21, H-18/H-20] were well corresponded to previously reported NOE correlations.<sup>27</sup> The  $\beta$ -configuration of 3-hydroxy group at C-3 was defined from the coupling constants of H-4 $\alpha$  ( $\delta$  2.16, dd, J = 11.2, 3.3 Hz) and NOESY correlations [H3/H4 $\alpha$ , H4 $\beta$  ( $\delta$  1.77)/H19].

Compound 1 was evaluated for antibacterial activity against seven pathogenic strains (Table 2). Compound 1 displayed the most potent activity on *Micrococcus lutes* ATCC 9341 and also showed the moderate activity against *Staphylococcus epidermidis* ATCC 12228 and *Bacillus subtilis* ATCC 6633 with IC<sub>50</sub> values of 3.1, 25 and 25 µg/mL, respectively. Meanwhile, 1 did not show any activity against gram negative strains include *Escherichia coli* ATCC 11775 *Salmonella typhimurium* ATCC 14028 and *Klebsiella pneumonia* ATCC 4352 up to 200 µg/mL. Interestingly, growth of one of the gram positive strain *Staphylococcus aureus* ATCC 65381 was not inhibited by 1 up to 200 µg/mL.

In conclusion, a new 9,11-Secosterol (1) with the 2-ene-1,4-dione moiety was isolated from the genus *Ircinia* and this compound displayed the most potent activity against *Micrococcus lutes* ATCC 9341 with the IC<sub>50</sub> value of  $3.1 \,\mu\text{g/mL}$ .

## Experimental

General Experimental Procedures. The optical rotation was measured using a Rudolph Research Autopol III polarimeter with a 5 cm cell. The UV spectrum was recorded in a Scinco UVS-2100 with a path length of 1 cm. Infrared spectra were recorded on a Thermo Electron Corporation spectrometer. NMR spectral spectroscopic data were obtained using Bruker Avance 600 MHz spectrometer [CDCl<sub>3</sub> ( $\delta_{\rm H}$  7.26;  $\delta_{\rm C}$  77.0) was used as an internal standard]. HRFAB-MS data were measured on a JEOL, JMS-AX505WA mass spectrometer.

**Isolation of Compound 1.** The genus *Ircinia* sponge was collected by SCUBA at Yeongdeok-Gun in the East Sea. The wet animal (3 kg) was extracted three times with 50% methanol (MeOH) in dichloromethane. These extracts were concentrated and partitioned three times between hexanes and MeOH. Then the MeOH-soluble layer was partitioned three times between ethylacetate (EtOAc) and water. The

water-soluble fraction was further extracted thrice with *n*butanol. The EtOAc-soluble layer (7.0 g) was subjected to silica flash column chromatography using step-gradient elution of EtOAc in hexanes (0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%) to afford seven fractions (Fr 1-Fr 11). Fr 5 (68.3 mg), which contained the mixture of **1**, was further purified by reversed-phase HPLC (Polar-RP, 250 × 10 mm, 5  $\mu$ m, 80 Å, 2.5 mL/min, UV detection = 210 nm), eluting with 70% acetonitrile in H<sub>2</sub>O to afford compound **1** (2.7 mg), as colorless needles.

**Compound 1:** Colorless needles;  $[\alpha]_D^{21} = -6.5^\circ$  (0.02, CHCl<sub>3</sub>); UV (MeOH)  $\lambda_{max}$  (log  $\varepsilon$ ) 274 (3.96) nm; IR (film)  $\nu_{max}$  3422, 2951, 2851, 1718, 1681, 1464, 1633 cm<sup>-1</sup>; <sup>1</sup>H NMR data, see Table 1; <sup>13</sup>C NMR data, see Table 1; LRFABMS *m*/*z* 449 [M+H]<sup>+</sup>; HRFABMS *m*/*z* 449.3271 [M+H]<sup>+</sup> (calcd for C<sub>27</sub>H<sub>45</sub>O<sub>5</sub>, 449.3275).

Acknowledgments. This work was supported by the Ewha Womans University Research Grant of 2013.

**Supporting Information.** 2D NMR spectroscopic data of **1** were available in the supporting information.

## References

- Blunt, J.; Buckingham, J.; Munro, M. H. G. In *Handbook of Marine* Natural Products; Fattorusso, E., Gerwick, W. H., Taglialatela-Scafati, O., Eds.; Springer: New York, 2012; Vol. 1, p 4.
- Martins, A.; Vieira, H.; Gaspar, H.; Santos, S. Mar. Drugs 2014, 12, 1066.
- Jeon, J. E.; Na, Z.; Jung, M.; Lee, H. S.; Sim, C. J.; Nahm, K.; Oh, K. B.; Shin, J. J. Nat. Prod. 2010, 73, 258.
- Hertiani, T.; Edrada-Ebel, R.; Ortlepp, S.; van Soest, R. W.; de Voogd, N. J.; Wray, V.; Hentschel, U.; Kozytska, S.; Muller, W. E.; Proksch, P. *Bioorg. Med. Chem.* 2010, *18*, 1297.

- Wright, A. D.; McCluskey, A.; Robertson, M. J.; MacGregor, K. A.; Gordon, C. P.; Guenther, J. J. Org. Biomol. Chem. 2011, 9, 400.
- 6. Keffer, J. L.; Plaza, A.; Bewley, C. A. Org. Lett. 2009, 11, 1087.
- 7. Manes, L. V.; Crews, P. J. Nat. Prod. 1986, 49, 787.
- 8. Faulkner, D. J. Tetrahedron Lett. 1973, 14, 3821.
- Kondo, K.; Shigemori, H.; Kikuchi, Y.; Ishibashi, M.; Sasaki, T.; Kobayashi, J. J. Org. Chem. 1992, 57, 2480.
- De Rosa, S.; Milone, A.; De Giulio, A.; Crispino, A.; Iodice, C. Nat. Prod. Lett. 1996, 8, 245.
- 11. Cimino, G.; De Stefano, S.; Minale, L. Experientia 1972, 28, 1401.
- De Pasquale, R.; Circosta, C.; Occhiuto, F.; De Rosa, S.; De Stefano, S. *Phytother. Res.* **1991**, *5*, 49.
- Kawakami, A.; Miyamoto, T.; Higuchi, R.; Uchiumi, T.; Kuwano, M.; Van Soest, R. W. M. *Tetrahedron Lett.* 2001, 42, 3335.
- Nakao, Y.; Matsunaga, S.; Fusetani, N. *Bioorg. Med. Chem.* 1995, 3, 1115.
- 15. Alfano, G; Cimino, G; De Stefano, S. Experientia 1979, 35, 1136.
- Cafieri, F.; Fattorusso, E.; Santocroce, C.; Minale, L. *Tetrahedron* 1972, 28, 1579.
- De Rosa, S.; De giulio, A.; Crispino, A.; Iodice, C.; Tommonaro, G. Nat. Prod. Lett. 1997, 10, 7.
- 18. Rothberg, I.; Shubiak, P. Tetrahedron Lett. 1975, 16, 769.
- 19. Cimino, G.; De Stefano, S.; Minale, L. *Tetrahedron* 1972, 28, 1315.
- 20. Venkateswarlu, Y.; Reddy, M. V. R. J. Nat. Prod. 1994, 57, 1286.
- Bifulco, G.; Bruno, I.; Minale, L.; Riccio, R.; Debitus, C.; Bourdy, G.; Vassas, A.; Lavayre, J. J. Nat. Prod. 1995, 58, 1444.
- Venkateswarlu, Y.; Reddy, M. V. R.; Rao, M. R. J. Nat. Prod. 1996, 59, 876.
- Fu, X.; Ferreira, M. L. G.; Schmitz, F. J.; Kelly, M. J. Org. Chem. 1999, 64, 6706.
- Xu, S. H.; Liao, X. J.; Du, B.; Zhou, X. L.; Huang, Q. C.; Wu, C. M. Steroids 2008, 73, 568.
- Reddy, M. V. R.; Harper, M. K.; Faulkner, D. J. J. Nat. Prod. 1997, 60, 41.
- 26. Lu, Q.; Faulkner, D. J. J. Nat. Prod. 1997, 60, 195.
- Anta, C.; González, N.; Rodriguez, J.; Jiménez, C. J. Nat. Prod. 2002, 65, 1357.