DOI QR코드

DOI QR Code

Mesoporous Carbon Additives for Long Cycle Life Sulfur Cathodes of Li-S Batteries

  • Koh, Jeong Yoon (Department of Chemical Engineering, Korea University of Technology and Education (KOREATECH)) ;
  • Kim, Tae Jeong (Department of Chemical Engineering, Korea University of Technology and Education (KOREATECH)) ;
  • Park, Min-Sik (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Kim, Eun Hee (Department of Chemical Engineering, Korea University of Technology and Education (KOREATECH)) ;
  • Kim, Seok (Department of Chemical Engineering, Pusan National University) ;
  • Kim, Ki Jae (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Yu, Ji-Sang (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Kim, Young-Jun (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Jung, Yongju (Department of Chemical Engineering, Korea University of Technology and Education (KOREATECH))
  • Received : 2014.07.07
  • Accepted : 2014.07.31
  • Published : 2014.11.20

Abstract

We examine the potential use of disordered mesoporous carbon as a functional additive for confining dissolved Li-polysulfides and improving the cycling performance of Li-S batteries. To promote a better understanding of the correlation between the total pore volume of disordered mesoporous carbon and the cycling performance of Li-S batteries, a series of disordered mesoporous carbons with different total pore volumes are successfully synthesized using a commercial silica template. Based on the electrochemical and structural analyses, we suggest that the total pore volume of disordered mesoporous carbon is a predominant factor in determining its capability for either the absorption or adsorption of Li-polysulfides, which is primarily responsible for enhancing the cycling performance. The addition of disordered mesoporous carbon is also effective in enhancing the homogeneous distribution of active sulfur in the cathode, thereby affecting the cycling performance.

Keywords

References

  1. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2012, 11, 19.
  2. Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. https://doi.org/10.1038/35104644
  3. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Angew. Chem. Int. Ed. 2008, 47, 2930. https://doi.org/10.1002/anie.200702505
  4. Jung, Y.; Kim, S. Electrochem. Commun. 2007, 9, 249. https://doi.org/10.1016/j.elecom.2006.09.013
  5. Kim, S.; Jung, Y.; Park, S. J. J. Power Sources 2005, 152, 272. https://doi.org/10.1016/j.jpowsour.2005.03.003
  6. Evers, S.; Nazar, L. F. Acc. Chem. Res. 2013, 46, 1135. https://doi.org/10.1021/ar3001348
  7. Manthiram, A.; Fu, Y. Z.; Su, Y. S. Acc. Chem. Res. 2013, 46, 1125. https://doi.org/10.1021/ar300179v
  8. Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500. https://doi.org/10.1038/nmat2460
  9. Zheng, G.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Nano Lett. 2011, 11, 4462. https://doi.org/10.1021/nl2027684
  10. Park, M. S.; Yu, J. S.; Kim, K. J.; Jeong, G.; Kim, J. H.; Jo, Y. N.; Hwang, U.; Kang, S.; Woo, T.; Kim, Y. J. Phys. Chem. Chem. Phys. 2012, 14, 6796. https://doi.org/10.1039/c2cp40727b
  11. Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Angew. Chem. Int. Ed. 2011, 50, 5904. https://doi.org/10.1002/anie.201100637
  12. Wang, H.; Yang, Y.; Liang, Y.; Robinson, J. T.; Li, Y.; Jackson, A.; Cui, Y.; Dai, H. Nano Lett. 2011, 11, 2644. https://doi.org/10.1021/nl200658a
  13. Rao, M.; Song, X.; Liao, H.; Cairns, E. J. Electrochim. Acta 2012, 65, 228. https://doi.org/10.1016/j.electacta.2012.01.051
  14. Guo, J.; Xu, Y.; Wang, C. Nano Lett. 2011, 11, 4288. https://doi.org/10.1021/nl202297p
  15. Elazari, R.; Salitra, G.; Garsuch, A.; Panchenko, A.; Aurbach, D. Adv. Mater. 2011, 23, 5641. https://doi.org/10.1002/adma.201103274
  16. Park, M. S.; Yu, J. S.; Kim, K. J.; Jeong, G.; Kim, J. H.; Yim, T.; Jo, Y. N.; Hwang, U.; Kang, S.; Woo, T.; Kim, H.; Kim, Y. J. RSC Adv. 2013, 3, 11774. https://doi.org/10.1039/c3ra41061g
  17. Liang, C.; Dudney, N. J.; Howe, J. Y. Chem. Mater. 2009, 21, 4724. https://doi.org/10.1021/cm902050j
  18. Schuster, J.; He, G.; Mandlmeier, B.; Yim, T.; Lee, K. T.; Bein, T.; Nazar, L. F. Angew. Chem. Int. Ed. 2012, 51, 3591. https://doi.org/10.1002/anie.201107817
  19. Seh, Z. W.; Li, W.; Cha, J. J.; Zheng, G.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Nat. Commun. 2013, 4, 1331. https://doi.org/10.1038/ncomms2327
  20. Ji, X.; Evers, S.; Black, R.; Nazar, L. F. Nat. Commun. 2011, 2, 325. https://doi.org/10.1038/ncomms1293
  21. Lai, C.; Gao, X. P.; Zhang, B.; Yan, T. Y.; Zhou, Z. J. Phys. Chem. C 2009, 113, 4712. https://doi.org/10.1021/jp809473e
  22. Shim, J.; Striebel, K. A.; Cairns, E. J. J. Electrochem. Soc. 2002, 149, A1321. https://doi.org/10.1149/1.1503076
  23. Li, X.; Cao, Y.; Qi, W.; Saraf, L. V.; Xiao, J.; Nie, Z.; Mietek, J.; Zhang, J. G.; Schwenzer, B.; Liu, J. J. Mater. Chem. 2011, 21, 16603. https://doi.org/10.1039/c1jm12979a
  24. Kruk, M.; Jaroniec, M.; Sayari, A. Langmuir 1997, 13, 6267. https://doi.org/10.1021/la970776m
  25. Kruk, M.; Jaroniec, M. J. Phys. Chem. B 2002, 106, 4732. https://doi.org/10.1021/jp0137423
  26. Park, M. S.; Jeong, B. O.; Kim, T. J.; Kim, S.; Kim, K. J.; Yu, J. S.; Jung, Y.; Kim, Y. J. Carbon 2014, 68, 265. https://doi.org/10.1016/j.carbon.2013.11.001

Cited by

  1. Efficient and Facile Fabrication of Hierarchical Carbon Foams with Abundant Nanoscale Pores for Use in Supercapacitors vol.38, pp.3, 2017, https://doi.org/10.1002/bkcs.11091
  2. A Sulfur‐layered Separator Enabling an Innovative Flexible Li S Battery without Integrating Elemental Sulfur in the Cathode vol.40, pp.6, 2014, https://doi.org/10.1002/bkcs.11718
  3. Essential Features of Electrolyte Solvents that Enable High‐Performance LiS Batteries vol.40, pp.6, 2014, https://doi.org/10.1002/bkcs.11736