DOI QR코드

DOI QR Code

Doping-Concentration and Annealing Effects on Photoluminescence Profile of Eu(III)-doped CeO2 nanorods

  • Lee, Juheon (Department of Chemistry, Yeungnam University) ;
  • Park, Yohan (Department of Chemistry, Yeungnam University) ;
  • Joo, Sang Woo (School of Mechanical Engineering, Yeungnam University) ;
  • Sohn, Youngku (Department of Chemistry, Yeungnam University)
  • Received : 2014.07.05
  • Accepted : 2014.07.29
  • Published : 2014.11.20

Abstract

Eu(III)-doped $CeO_2$ nanorods were prepared by a co-precipitation method at room temperature, and their photoluminescence profiles were examined with different Eu(III)-doping concentrations and thermal annealing temperatures. Scanning electron microscopy, X-ray diffraction crystallography and UV-Vis absorption spectroscopy were employed to examine the morphology, crystal structure and photon absorption profiles of the nanorods, respectively. Additionally, their 2D and 3D-photoluminescence profile maps were obtained to fully understand the photoluminescence mechanism. We found that the magnetic dipole $^5D_0{\rightarrow}^7F_1$ and the electric dipole $^5D_0{\rightarrow}^7F_2$ transitions of Eu(III) were highly dependent on the doping concentration, annealing temperature and excitation wavelength, which was explained by the presence of different Eu(III)-doping sites (with and without an inversion center) in the $CeO_2$ host with a cubic crystal structure.

Keywords

References

  1. Wang, Z.; Teng, X.; Li, P. J. Alloys Compd. 2014, 589, 549. https://doi.org/10.1016/j.jallcom.2013.12.046
  2. Zhang, D.: Yan, T.; Shi, L.; Li, H.; Chiang, J. F. J. Alloys Compd. 2010, 506, 446. https://doi.org/10.1016/j.jallcom.2010.07.026
  3. Fang, Y.-C.; Huang, X.-R.; Juang, Y.-D.; Chu, S.-Y. J. Am. Ceram. Soc. 2012, 95, 1613. https://doi.org/10.1111/j.1551-2916.2011.05021.x
  4. Shi, L.; Li, C.; Su, Q. J. Alloys Compd. 2011, 509, 4209. https://doi.org/10.1016/j.jallcom.2010.11.159
  5. Malleshappa, J.; Nagabhushana, H.; Sharma, S.C.; Sunitha, D. V.; Dhananjaya, N.; Shivakumara, C.; Nagabhushana, B. M. J. Alloys Compd. 2014, 590, 131. https://doi.org/10.1016/j.jallcom.2013.11.213
  6. Tiseanu, C.; Parvulescu, V. I.; Sanchez-Dominguez, M.; Boutonnet, M. J. Appl. Phys. 2012, 112, 013521. https://doi.org/10.1063/1.4730609
  7. Li, L.; Yang, H. K.; Moon, B. K.; Fu, Z.; Guo, C.; Jeong, J. H.; Yi, S. S.; Jang, K.; Lee, H. S. J. Phys. Chem. C 2009, 113, 610.
  8. Dutta, D. P.; Manoj, N.; Tyagi, A. K. J. Lumin. 2011, 131, 1807. https://doi.org/10.1016/j.jlumin.2011.04.017
  9. Taguchi, M.; Takami, S.; Adschiri, T.; Nakane, T.; Sato, K.; Naka, T. CrystEngComm 2011, 13, 2841. https://doi.org/10.1039/c0ce00467g
  10. Meng, F.; Wang, L.; Cui, J. J. Alloys Compd. 2013, 556, 102. https://doi.org/10.1016/j.jallcom.2012.12.096
  11. Deus, R. C.; Cilense, M.; Foschini, C. R.; Ramirez, M. A.; Longo, E.; Simoes, A. Z. J. Alloys Compd. 2013, 550, 245. https://doi.org/10.1016/j.jallcom.2012.10.001
  12. Wang, G.;Mu, Q.; Chen, T.; Wang, Y. J. Alloys Compd. 2010, 493, 202. https://doi.org/10.1016/j.jallcom.2009.12.053
  13. Wang, Z.; Quan, Z.; Lin, J. Inorg. Chem. 2007, 46, 5237. https://doi.org/10.1021/ic0701256
  14. Ansari, A. A.; Singh, S. P.; Malhotra, B. D. J. Alloys Compd. 2011, 509, 262. https://doi.org/10.1016/j.jallcom.2010.07.009
  15. Wang, X.; Zhang, D.; Li, Y.; Tang, D.; Xiao, Y.; Liu, Y.; Huo, Q. RSC Adv. 2013, 3, 3623. https://doi.org/10.1039/c2ra22492e
  16. Zeng, L.; Chen, D.; Huang, F.; Yang, A.; Lei, L.; Wang, Y. J. Alloys Compd. 2012, 534, 64. https://doi.org/10.1016/j.jallcom.2012.04.058
  17. Yu, Y.; Chen, D.; Huang, P.; Lin, H.; Yang, A.; Wang, Y. J. Alloys Compd. 2012, 513, 626. https://doi.org/10.1016/j.jallcom.2011.11.032
  18. Shi, S.; Hossu, M.; Hall, R.; Chen, W. J. Mater. Chem. 2012, 22, 23461. https://doi.org/10.1039/c2jm34950g
  19. Kremenovic, A.; Bozanic, D. K.; Welsch, A.-M.; Jancar, B.; Nikolic, A. S.; Boskovic, M.; Colomban, Ph.; Fabian, M.; Antic, B. J. Nanosci. Nanotech. 2012, 12, 8893. https://doi.org/10.1166/jnn.2012.6797
  20. Kumar, A.; Babu, S.; Karakoti, A. S.; Schulte, A.; Seal, S. Langmuir 2009, 25, 10998. https://doi.org/10.1021/la901298q
  21. Wang, Z.-L.; Li, G.-R.; Ou, Y.-N.; Feng, Z.-P.; Qu, D.-L.; Tong, Y.-X. J. Phys. Chem. C 2011, 115, 351.
  22. Guo, H.; Qiao, Y. Appl. Surf. Sci. 2008, 254, 1961. https://doi.org/10.1016/j.apsusc.2007.08.007
  23. Babu, S.; Schulte, A.; Seal, S. Appl. Phys. Lett. 2008, 92, 123112. https://doi.org/10.1063/1.2904627
  24. Liu, X.; Chen, S.; Wang, X. J. Lumin. 2007, 127, 650. https://doi.org/10.1016/j.jlumin.2007.03.014
  25. Oikawa, M.; Fujihara, S. J. Euro. Ceram. Soc. 2005, 25, 2921. https://doi.org/10.1016/j.jeurceramsoc.2005.03.165
  26. Fujihara, S.; Oikawa, M. J. Appl. Phys. 2004, 95, 8002. https://doi.org/10.1063/1.1751240
  27. Sohn, Y. Ceram. Inter. 2014, 40, 2467. https://doi.org/10.1016/j.ceramint.2013.08.022
  28. Sohn, Y. Ceram. Inter. 2013, 39, 9157. https://doi.org/10.1016/j.ceramint.2013.05.016
  29. Sohn, Y. J. Am. Ceram. Soc. 2013, 12, 3747.
  30. Cho, I.; Kang, J.-G.; Sohn, Y. Bull. Korean Chem. Soc. 2014, 35, 575. https://doi.org/10.5012/bkcs.2014.35.2.575
  31. Askrabic, A.; Dohcevic-Mitrovic, Z. D.; Araujo, V. D.; Ionita, G.; de Lima, M. M., Jr.; Cantarero, A. J. J. Phys. D 2013, 46, 495306. https://doi.org/10.1088/0022-3727/46/49/495306
  32. Li, L.; Zhou, S.; Zhang, S. Chem. Phys. Lett. 2008, 453, 283. https://doi.org/10.1016/j.cplett.2008.01.033

Cited by

  1. Fabricated CeO2 nanopowders as a novel sensing platform for advanced forensic, electrochemical and photocatalytic applications vol.7, pp.8, 2017, https://doi.org/10.1007/s13204-017-0611-x