DOI QR코드

DOI QR Code

Indium Sulfide and Indium Oxide Thin Films Spin-Coated from Triethylammonium Indium Thioacetate Precursor for n-Channel Thin Film Transistor

  • Dao, Tung Duy (Department of Chemistry, Chonnam National University) ;
  • Jeong, Hyun-Dam (Department of Chemistry, Chonnam National University)
  • Received : 2014.04.18
  • Accepted : 2014.07.30
  • Published : 2014.11.20

Abstract

The In2S3 thin films of tetragonal structure and In2O3 films of cubic structure were synthesized by a spin coating method from the organometallic compound precursor triethylammonium indium thioacetate ($[(Et)_3NH]^+[In(SCOCH_3)_4]^-$; TEA-InTAA). In order to determine the electron mobility of the spin-coated TEA-InTAA films, thin film transistors (TFTs) with an inverted structure using a gate dielectric of thermal oxide ($SiO_2$) was fabricated. These devices exhibited n-channel TFT characteristics with a field-effect electron mobility of $10.1cm^2V^{-1}s^{-1}$ at a curing temperature of $500^{\circ}C$, indicating that the semiconducting thin film material is applicable for use in low-cost, solution-processed printable electronics.

Keywords

References

  1. Kim, W. T.; Kim, C. D. J. Appl. Phys. 1986, 60, 2631. https://doi.org/10.1063/1.337137
  2. Nomura, R.; Inazawa, S.; Kanaya, K.; Matsuda, H. Appl. Organomet. Chem. 1989, 3, 195. https://doi.org/10.1002/aoc.590030213
  3. Asikainen, T.; Ritala, M.; Leskela, M. Appl. Surf. Sci. 1994, 82/83, 122. https://doi.org/10.1016/0169-4332(94)90206-2
  4. Dalas, E.; Kobotiatis, L. J. Mater. Sci. 1993, 28, 5456. https://doi.org/10.1007/BF00367815
  5. Diehl, R.; Nitsche, R. J. Cryst. Growth. 1975, 28, 306. https://doi.org/10.1016/0022-0248(75)90067-6
  6. Choe, S. H.; Band, T. H.; Kim, N. O.; Kim, H. G.; Lee, C. I.; Jin, M. S.; Oh, W. T.; Kim, W. T. Semicond. Sci. Technol. 2001, 16, 98. https://doi.org/10.1088/0268-1242/16/2/307
  7. Takeshi, T.; Susumu, M.; Toshio, N.; Nobuo, I. Japanese Patent Application; Chem. Abstr. 1979, 91, 67384a. Patent Application No: 77/139,889.
  8. Toshiba Corp. Japanese Patent Application; Chem. Abstr. 1979, 96, 113316h. Patent Application No: 80/57764.
  9. Dalas, E.; Sakkopoulos, S.; Vitoratos, E.; Maroulis, G. J. Mater. Sci. 1993, 28, 5456. https://doi.org/10.1007/BF00367815
  10. Hamberg, I.; Granqvist, C. G. J. Appl. Phys. 1986, 60, R123. https://doi.org/10.1063/1.337534
  11. Zhang, Y.; Jia, H.; Yu, D.; Luo, X.; Zhang, Z.; Chen, X. J. Mater. Res. 2003, 18, 2793. https://doi.org/10.1557/JMR.2003.0389
  12. Deivaraj, T. C.; Lin, M.; Loh, K. P.; Yeadon, M.; Vittal, J. J. J. Mater. Chem. 2003, 13, 1149. https://doi.org/10.1039/b212856j
  13. Dung, M. X.; Tung, D. D.; Jeong, H. D. Curr. Appl. Phys. 2013, 13, 1075 https://doi.org/10.1016/j.cap.2013.02.017
  14. Dao, T. D.; Hafez, M. E.; Beloborodov, I. S.; Jeong, H. D. Bull. Korean Chem. Soc. 2014, 35, 457. https://doi.org/10.5012/bkcs.2014.35.2.457
  15. Seon, J. B.; Lee, S.; Kim, J. M.; Jeong, H. D. Chem. Mater. 2009, 21, 604. https://doi.org/10.1021/cm801557q
  16. Datta, A.; Panda, S. K.; Ganguli, D.; Mishra, P.; Chaudhuri, S. Crystal Growth & Design 2007, 7, 163. https://doi.org/10.1021/cg0606895
  17. Shekar, B. C.; Lee, J.; Rhee, S. W. Korean J. Chem. Eng. 2004, 21, 267. https://doi.org/10.1007/BF02705409
  18. Li, C. S.; Li, Y. N.; Wu, Y. L.; Ong, B. S.; Loutfy, R. O. J. Mater. Chem. 2009, 19, 1626. https://doi.org/10.1039/b812047a
  19. Fortunato, N.; Barquinha, P.; Martins, R. Adv. Mater. 2012, 24, 2945. https://doi.org/10.1002/adma.201103228
  20. Kim, M. G.; Kanatzidis, M. G.; Facchetti, A.; Marks, T. J. Nature Materials 2011, 10, 382. https://doi.org/10.1038/nmat3011