DOI QR코드

DOI QR Code

Photoelectrochemical Water Splitting on a Delafossite CuGaO2 Semiconductor Electrode

  • Lee, Myeongsoon (Department of Chemistry, Pukyong National University) ;
  • Kim, Don (Department of Chemistry, Pukyong National University) ;
  • Yoon, Yong Tae (Department of Chemistry, Pukyong National University) ;
  • Kim, Yeong Il (Department of Chemistry, Pukyong National University)
  • Received : 2014.03.13
  • Accepted : 2014.07.21
  • Published : 2014.11.20

Abstract

A pellet of polycrystalline $CuGaO_2$ with a delafossite structure was prepared from $Ga_2O_3$ and CuO by high-temperature solid-state synthesis. The $CuGaO_2$ pellet was a p-type semiconductor for which the electrical conductivity, carrier density, carrier mobility and Seebeck coefficient were $5.34{\times}10^{-2}{\Omega}^{-1}cm^{-1}$, $3.5{\times}10^{20}cm^{-3}$, $9.5{\times}10^{-4}cm^2V^{-1}s^{-1}$ at room temperature, and $+360{\mu}V/K$, respectively. It also exhibited two optical transitions at about 2.7 and 3.6 eV. The photoelectrochemical properties of the $CuGaO_2$ pellet electrode were investigated in aqueous electrolyte solutions. The flat-band potential of this electrode, determined using a Mott-Schottky plot, was +0.18 V vs SCE at pH 4.8 and followed the Nernst equation with respect to pH. Under UV light illumination, a cathodic photocurrent developed, and molecular hydrogen simultaneously evolved on the surface of the electrode due to the direct reduction of water without deposition of any metal catalyst.

Keywords

References

  1. (a) Monnier, J. R.; Hanrahan, M. J.; Apai, G. J. Catal. 1985, 92, 119. https://doi.org/10.1016/0021-9517(85)90241-6
  2. (b) Christopher, J.; Swamy, C. S. J. Mater. Sci. 1992, 27, 1353. https://doi.org/10.1007/BF01142052
  3. (c) Ikeda, S.; Akira, T.; Hosono, H.; Kawazoe, H.; Hara, M.; Kondo, J.; Domen, K. Stud. Surf. Sci. Catal. 1999, 121, 301. https://doi.org/10.1016/S0167-2991(99)80083-4
  4. (a) Sukeshini, A. M.; Kobayashi, H.; Tabuchi, M.; Kageyama, H. Solid State Ionics 2000, 128, 33. https://doi.org/10.1016/S0167-2738(00)00274-5
  5. (b) Sukeshini, A. M.; Kobayashi, H.; Tabuchi, M.; Kageyama, H. Proc. Electrochem. Soc. 2000, 99, 104.
  6. (a) Kawazoe, H.; Yasukawa, M.; Hyodo, H.; Kurita, M.; Yanagi, H.; Hosono, H. Nature 1997, 389, 939. https://doi.org/10.1038/40087
  7. (b) Ueda, K.; Hase, T.; Yanagi, H.; Kawazoe, H.; Hosono, H. J. Appl. Phys. 2001, 89, 1790. https://doi.org/10.1063/1.1337587
  8. (a) Shannon, R. D.; Roggers, D. B.; Prewitt, C. B. Inorg. Chem. 1971, 10, 713. https://doi.org/10.1021/ic50098a011
  9. (b) Prewitt, C. B.; Shannon, R. D.; Roggers, D. B. Inorg. Chem. 1971, 10, 719. https://doi.org/10.1021/ic50098a012
  10. (c) Roggers, D. B.; Shannon, R. D.; Prewitt, C. B.; Gillson, J. A. Inorg. Chem. 1971, 10, 723. https://doi.org/10.1021/ic50098a013
  11. Fujishima, A.; Honda, K. Nature 1972, 238, 37. https://doi.org/10.1038/238037a0
  12. Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. C. In. J. Hydrogen Energy 2002, 27, 991. https://doi.org/10.1016/S0360-3199(02)00022-8
  13. (a) Yu, M.; Natu, G.; Ji, Z.; Wu, Y. J. Phys. Chem. Lett. 2012, 3, 1074. https://doi.org/10.1021/jz3003603
  14. (b) Lenaud, A.; Chavillon, B.; Le Pleux, L.; Pellegrin, Y.; Blart, E.; Boujtita, A.; Pauport, T.; Cario, L.; Jobic, S.; Odobel, F. J. Mater. Chem. 2012, 22, 14353. https://doi.org/10.1039/c2jm31908j
  15. (c) Xu, Z.; Xiong, D.; Wang, H.; Zhang, W.; Zeng, X. Ming, L.; Chen, W.; Xu, X.; Cui, J.; Wang, M.; Powar, S.; Bach, U.; Cheng, Y. -B. J. Mater. Chem. A 2014, 2, 2968. https://doi.org/10.1039/c3ta14072e
  16. Benko, F. A.; Koffyberg, F. P. Phys. Status Solidi A 1986, 94, 231. https://doi.org/10.1002/pssa.2210940127
  17. JCPDS data base 77-2495.
  18. Butler, M. A. J. Appl. Phys. 1977, 48, 1914. https://doi.org/10.1063/1.323948
  19. Gall, R. B.; Ashmore, N.; Marquardt, M. A.; Tan, X.; Cann, D. P. J. All. Comp. 2005, 391, 262. https://doi.org/10.1016/j.jallcom.2004.08.070
  20. Herraiz-Cardona, I.; Fabregat-Santiago, F.; Renaud, A.; Julian- Lopez, B.; Odobel, F.; Cario, L.; Jobic, S.; Gimenez, S. Electrochim. Acta 2013, 113, 570. https://doi.org/10.1016/j.electacta.2013.09.129
  21. Lee, M. S.; Kim, T. Y.; Kim, D. Appl. Phys. Lett. 2001, 79, 2028. https://doi.org/10.1063/1.1405809
  22. Benko, F. A.; Koffyberg, F. P. J. Phys. Chem. Solids 1984, 45, 55.
  23. Stauber, R. E.; Perkins, J. D.; Parilla, P. A.; Ginley, D. S. Electrochem. Solid-State Lett. 1999, 2, 654. https://doi.org/10.1149/1.1390938
  24. Yanagi, H.; Inoue, S.; Ueda, K.; Kawazoe, H.; Hosono, H.; Hamada, N. J. Appl. Phys. 2000, 88, 4159. https://doi.org/10.1063/1.1308103
  25. Morrison, S. R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes; Plenum: New York, 1980.

Cited by

  1. reduction with water oxidation vol.8, pp.6, 2017, https://doi.org/10.1039/C7SC00940B
  2. Delafossite Nanoparticle as New Functional Materials: Advances in Energy, Nanomedicine and Environmental Applications vol.832, pp.1662-9752, 2015, https://doi.org/10.4028/www.scientific.net/MSF.832.28
  3. Recent Advances in Earth-Abundant Photocathodes for Photoelectrochemical Water Splitting pp.18645631, 2019, https://doi.org/10.1002/cssc.201801554
  4. Synthesis and characterization of photoactive material Cu2NiSnS4 thin films vol.30, pp.4, 2019, https://doi.org/10.1007/s10854-018-00607-z
  5. AgCuO2 as a novel bifunctional electrocatalyst for overall water splitting in alkaline media vol.43, pp.11, 2014, https://doi.org/10.1039/c8nj06505e
  6. Developing photocathode materials for p-type dye-sensitized solar cells vol.7, pp.34, 2014, https://doi.org/10.1039/c9tc01822k
  7. In situ growth of monocrystal p-CuGaO2 nanosheet as a hole transfer layer in a photoelectrode for solar hydrogen production vol.52, pp.40, 2019, https://doi.org/10.1088/1361-6463/ab2fee
  8. Delafossite CuGaO2 as promising visible-light-driven photocatalyst: synthesize, properties, and performances vol.53, pp.13, 2014, https://doi.org/10.1088/1361-6463/ab6791
  9. Towards sustainable and efficient p-type metal oxide semiconductor materials in dye-sensitised photocathodes for solar energy conversion vol.22, pp.25, 2014, https://doi.org/10.1039/d0cp01363c
  10. Revealing the Electronic Structure and Optical Properties of CuFeO2 as a p-Type Oxide Semiconductor vol.3, pp.4, 2021, https://doi.org/10.1021/acsaelm.1c00090