References
- (a) Monnier, J. R.; Hanrahan, M. J.; Apai, G. J. Catal. 1985, 92, 119. https://doi.org/10.1016/0021-9517(85)90241-6
- (b) Christopher, J.; Swamy, C. S. J. Mater. Sci. 1992, 27, 1353. https://doi.org/10.1007/BF01142052
- (c) Ikeda, S.; Akira, T.; Hosono, H.; Kawazoe, H.; Hara, M.; Kondo, J.; Domen, K. Stud. Surf. Sci. Catal. 1999, 121, 301. https://doi.org/10.1016/S0167-2991(99)80083-4
- (a) Sukeshini, A. M.; Kobayashi, H.; Tabuchi, M.; Kageyama, H. Solid State Ionics 2000, 128, 33. https://doi.org/10.1016/S0167-2738(00)00274-5
- (b) Sukeshini, A. M.; Kobayashi, H.; Tabuchi, M.; Kageyama, H. Proc. Electrochem. Soc. 2000, 99, 104.
- (a) Kawazoe, H.; Yasukawa, M.; Hyodo, H.; Kurita, M.; Yanagi, H.; Hosono, H. Nature 1997, 389, 939. https://doi.org/10.1038/40087
- (b) Ueda, K.; Hase, T.; Yanagi, H.; Kawazoe, H.; Hosono, H. J. Appl. Phys. 2001, 89, 1790. https://doi.org/10.1063/1.1337587
- (a) Shannon, R. D.; Roggers, D. B.; Prewitt, C. B. Inorg. Chem. 1971, 10, 713. https://doi.org/10.1021/ic50098a011
- (b) Prewitt, C. B.; Shannon, R. D.; Roggers, D. B. Inorg. Chem. 1971, 10, 719. https://doi.org/10.1021/ic50098a012
- (c) Roggers, D. B.; Shannon, R. D.; Prewitt, C. B.; Gillson, J. A. Inorg. Chem. 1971, 10, 723. https://doi.org/10.1021/ic50098a013
- Fujishima, A.; Honda, K. Nature 1972, 238, 37. https://doi.org/10.1038/238037a0
- Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. C. In. J. Hydrogen Energy 2002, 27, 991. https://doi.org/10.1016/S0360-3199(02)00022-8
- (a) Yu, M.; Natu, G.; Ji, Z.; Wu, Y. J. Phys. Chem. Lett. 2012, 3, 1074. https://doi.org/10.1021/jz3003603
- (b) Lenaud, A.; Chavillon, B.; Le Pleux, L.; Pellegrin, Y.; Blart, E.; Boujtita, A.; Pauport, T.; Cario, L.; Jobic, S.; Odobel, F. J. Mater. Chem. 2012, 22, 14353. https://doi.org/10.1039/c2jm31908j
- (c) Xu, Z.; Xiong, D.; Wang, H.; Zhang, W.; Zeng, X. Ming, L.; Chen, W.; Xu, X.; Cui, J.; Wang, M.; Powar, S.; Bach, U.; Cheng, Y. -B. J. Mater. Chem. A 2014, 2, 2968. https://doi.org/10.1039/c3ta14072e
- Benko, F. A.; Koffyberg, F. P. Phys. Status Solidi A 1986, 94, 231. https://doi.org/10.1002/pssa.2210940127
- JCPDS data base 77-2495.
- Butler, M. A. J. Appl. Phys. 1977, 48, 1914. https://doi.org/10.1063/1.323948
- Gall, R. B.; Ashmore, N.; Marquardt, M. A.; Tan, X.; Cann, D. P. J. All. Comp. 2005, 391, 262. https://doi.org/10.1016/j.jallcom.2004.08.070
- Herraiz-Cardona, I.; Fabregat-Santiago, F.; Renaud, A.; Julian- Lopez, B.; Odobel, F.; Cario, L.; Jobic, S.; Gimenez, S. Electrochim. Acta 2013, 113, 570. https://doi.org/10.1016/j.electacta.2013.09.129
- Lee, M. S.; Kim, T. Y.; Kim, D. Appl. Phys. Lett. 2001, 79, 2028. https://doi.org/10.1063/1.1405809
- Benko, F. A.; Koffyberg, F. P. J. Phys. Chem. Solids 1984, 45, 55.
- Stauber, R. E.; Perkins, J. D.; Parilla, P. A.; Ginley, D. S. Electrochem. Solid-State Lett. 1999, 2, 654. https://doi.org/10.1149/1.1390938
- Yanagi, H.; Inoue, S.; Ueda, K.; Kawazoe, H.; Hosono, H.; Hamada, N. J. Appl. Phys. 2000, 88, 4159. https://doi.org/10.1063/1.1308103
- Morrison, S. R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes; Plenum: New York, 1980.
Cited by
- reduction with water oxidation vol.8, pp.6, 2017, https://doi.org/10.1039/C7SC00940B
- Delafossite Nanoparticle as New Functional Materials: Advances in Energy, Nanomedicine and Environmental Applications vol.832, pp.1662-9752, 2015, https://doi.org/10.4028/www.scientific.net/MSF.832.28
- Recent Advances in Earth-Abundant Photocathodes for Photoelectrochemical Water Splitting pp.18645631, 2019, https://doi.org/10.1002/cssc.201801554
- Synthesis and characterization of photoactive material Cu2NiSnS4 thin films vol.30, pp.4, 2019, https://doi.org/10.1007/s10854-018-00607-z
- AgCuO2 as a novel bifunctional electrocatalyst for overall water splitting in alkaline media vol.43, pp.11, 2014, https://doi.org/10.1039/c8nj06505e
- Developing photocathode materials for p-type dye-sensitized solar cells vol.7, pp.34, 2014, https://doi.org/10.1039/c9tc01822k
- In situ growth of monocrystal p-CuGaO2 nanosheet as a hole transfer layer in a photoelectrode for solar hydrogen production vol.52, pp.40, 2019, https://doi.org/10.1088/1361-6463/ab2fee
- Delafossite CuGaO2 as promising visible-light-driven photocatalyst: synthesize, properties, and performances vol.53, pp.13, 2014, https://doi.org/10.1088/1361-6463/ab6791
- Towards sustainable and efficient p-type metal oxide semiconductor materials in dye-sensitised photocathodes for solar energy conversion vol.22, pp.25, 2014, https://doi.org/10.1039/d0cp01363c
- Revealing the Electronic Structure and Optical Properties of CuFeO2 as a p-Type Oxide Semiconductor vol.3, pp.4, 2021, https://doi.org/10.1021/acsaelm.1c00090