DOI QR코드

DOI QR Code

Photophysical Properties of Highly Efficient Blue-Green Emitting Cationic Iridium (III) Complexes Containing Two 2-Phenylbenzothiazole Ligands and One Diphosphine Ligand

  • Yun, Seong-Jae (Department of Chemistry Education and BK21 Plus Team for Advanced Chemical Materials, Pusan National University) ;
  • Song, Young-Kwang (Department of Chemistry Education and BK21 Plus Team for Advanced Chemical Materials, Pusan National University) ;
  • Kim, Minji (Department of Chemistry Education and BK21 Plus Team for Advanced Chemical Materials, Pusan National University) ;
  • Shin, Jaemin (Department of Chemistry Education and BK21 Plus Team for Advanced Chemical Materials, Pusan National University) ;
  • Jin, Sung-Ho (Department of Chemistry Education and BK21 Plus Team for Advanced Chemical Materials, Pusan National University) ;
  • Kang, Sung Kwon (Department of Chemistry, Chungnam National University) ;
  • Kim, Young-Inn (Department of Chemistry Education and BK21 Plus Team for Advanced Chemical Materials, Pusan National University)
  • Received : 2014.04.23
  • Accepted : 2014.07.02
  • Published : 2014.11.20

Abstract

Two novel phosphorescent heteroleptic cationic Ir(III) complexes, Ir(bt)2(dmpe) (Ir1) and Ir (bt)2(dppe) (Ir2), where bt is 2-phenylbenzothiazole, dmpe is 1,2-bis(dimethylphosphino)ethane, and dppe is 1,2-bis(diphenyl-phosphino) ethane, were designed and synthesized. Their photophysical and electrochemical properties and the X-ray structure of the Ir1 complex were investigated. The prepared Ir(III) complexes exhibited blue-green emissions at 503-538 nm with vibronic fine structures in dichloromethane solution and PMMA film, implying that the lowest excited states are dominated by ligand-based $^3{\pi}-{\pi}^*$ transitions. The ${\pi}$-acceptor ability of the diphosphine ancillary ligand leads to blue-shift emission. The room temperature photoluminescent quantum yields (PLQYs) of Ir1 and Ir2 were 52% and 45%, respectively, in dichloromethane solution. These high PLQYs resulted from steric hindrances by the bulky cationic iridium complexes. The crystal structure of Ir1 was determined by X-ray crystallography, which revealed that central iridium adopted a distorted octahedral structure coordinated with two bt ligands (N^C) and one dmpe ligand (P^P) showing cis C-C and trans N-N dispositions. The bent nature of the dmpe ligand resulted in a relatively wide bite angle of $83.83^{\circ}$ of P-Ir-P.

Keywords

References

  1. (a) Tang, C. W.; Van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913. https://doi.org/10.1063/1.98799
  2. (b) Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley D. D. C.; Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R. Nature (London) 1999, 397, 121. https://doi.org/10.1038/16393
  3. (c) D'Andrade, B. W.; Forrest, S. R. Adv. Mater. 2004, 16, 1585. https://doi.org/10.1002/adma.200400684
  4. (d) Tseng, R. J.; Chiechi, R. C.; Wudl, F.; Yang, Y. Appl. Phys. Lett. 2006, 88, 093512. https://doi.org/10.1063/1.2167814
  5. (e) Fan, C.; Miao, J.; Jiang, B.; Yang, C.; Wu, H.; Qin, J.; Cao, Y. Org. Elect. 2013, 14, 3392. https://doi.org/10.1016/j.orgel.2013.10.013
  6. (f) Wang, L.; Wu, Y.; Shan, G.-G.; Geng, Y.; Zhang, J.-Z.; Wang, D.-M.; Yang, G.-C.; Su, Z.-M. J. Mater. Chem. C 2014, 2, 2859. https://doi.org/10.1039/c3tc31831a
  7. (g) Teng, M.-Y.; Zhang, S.; Jin, W.-M.; Li, T.-Y.; Liu, X.; Xu, Q.-L.; Lin, C.; Zheng, Y.-X.; Wang, L.; Zuo, J.-L. Dyes and Pigments 2014, 105, 105. https://doi.org/10.1016/j.dyepig.2014.01.033
  8. (a) Lee, J. K.; Yoo, D. S.; Handy, E. S.; Rubner, M. F. Appl. Phys. Lett. 1996, 69, 1686. https://doi.org/10.1063/1.117028
  9. (b) Sinker, J. D.; Gorodetsky, A. A.; Lowry, M. S.; Wang, J. J.; Parker, S.; Rohl, R.; Bernhard, S.; Malliaras, G. G. J. Am. Chem. Soc. 2004, 126, 2763. https://doi.org/10.1021/ja0345221
  10. (c) Bolink, H. J.; Cappelli, L.; Cheylan, S.; Coronado, E.; Costa, R. D.; Lardie, N.; Nazeeruddin, M. K.; Orti, E. J. Mater. Chem. 2007, 17, 2976. https://doi.org/10.1039/b704017b
  11. (d) Rudmann, H.; Rubner, M. F. J. Appl. Phys. 2011, 90, 4338.
  12. (e) Sunesh, C. D.; Mathai, G.; Cho, Y.-R.; Choe, Y. Polyhedron 2013, 57, 77. https://doi.org/10.1016/j.poly.2013.04.029
  13. (f) Zhang, J.; Zhou, L.; Al-Attar, H. A.; Shao, K.; Wang, L.; Zhu, D.; Su, Z.; Bryce, M. R.; Monkman, A. P. Adv. Funct. Mater. 2013, 23, 4667.
  14. (g) Sunesh, C. D.; Mathai, G.; Choe, Y. Org. Elect. 2014, 15, 667. https://doi.org/10.1016/j.orgel.2013.12.026
  15. (a) You, Y.; Soo, Y. P. J. Am. Chem. Soc. 2005, 127, 12438. https://doi.org/10.1021/ja052880t
  16. (b) Dedeian, K.; Shi, J.; Shepherd, N.; Forsythe, E.; Morton, D. C. Inorg. Chem. 2005, 44, 4445. https://doi.org/10.1021/ic050324u
  17. (c) Kappaun, S.; Sax, S.; Eder, S.; Moller, K. C.; Waich, K.; Niedermair, F.; Saf, R.; Mereiter, K.; Jacob, J.; Mullen, K.; List, E. J. W.; Slugovc, C. Chem. Mater. 2007, 19, 1209. https://doi.org/10.1021/cm062666j
  18. (d) Seo, H.-J.; Yoo, K.-M.; Song, M.; Park, J. S.; Jin, S.-H.; Kim, Y. I.; Kim, J.-J. Org. Elect. 2010, 11, 564. https://doi.org/10.1016/j.orgel.2009.12.014
  19. (e) Fan, C.; Zhu, L.; Jiang, B.; Zhong, C.; Ma, D.; Qin, J.; Yang, C. Org. Elect. 2013, 14, 3163. https://doi.org/10.1016/j.orgel.2013.09.026
  20. (f) Cao, H.; Sun, H.; Yin, X.; Shan, G.; Su, Z.; Zhong, R.; Xie, W.; Li, P.; Zhu, D. J. Mater. Chem. C 2014, 2, 2150. https://doi.org/10.1039/c3tc32092h
  21. (a) Wong, W.-Y.; Zhou, G.-J.; Yu, X.-M.; Kwok, H.-S.; Lin, Z. Adv. Funct. Mater. 2007, 17, 315. https://doi.org/10.1002/adfm.200600359
  22. (b) Angelis, F. D.; Fantacci, S.; Evans, N.; Klein, C.; Zakeeruddin, S. M.; Moser, J.-E.; Kalyanasundaram, K.; Bolink, H. J.; Gra1tzel, M.; Nazeeruddin, M. K. Inorg. Chem. 2007, 46, 5989. https://doi.org/10.1021/ic700435c
  23. (c) Geiss, B.; Lambert, C. Chem. Commun. 2009, 1670.
  24. (a) Tamayo, A. B.; Garon, S.; Sajoto, T.; Djurovich, P. I.; Tsyba, I. M.; Bau, R.; Thompson, M. E. Inorg. Chem. 2005, 44, 8723. https://doi.org/10.1021/ic050970t
  25. (b) Zhao, Q.; Liu, S.; Shi, M.; Wang, C.; Yu, M.; Li, L.; Li, F.; Yi, T.; Huang, C. Inorg. Chem. 2006, 45, 6152. https://doi.org/10.1021/ic052034j
  26. (c) Auffrant, A.; Barbieri, A.; Barigelletti, F.; Lacour, J.; Mobian, P.; Collin, J.-P.; Sauvage, J.-P.; Ventura, B. Inorg. Chem. 2007, 46, 6911. https://doi.org/10.1021/ic700494e
  27. (d) Yun, S.-J.; Seo, H.-J.; Song, M.; Jin, S.-H.; Kim, Y. I. Bull. Korean Chem. Soc. 2012, 33, 3645. https://doi.org/10.5012/bkcs.2012.33.11.3645
  28. Ma, D.; Duan, L.; Wei, Y.; He, L.; Wang, L.; Qiu, Y. Chem. Commun. 2014, 530.
  29. Nonoyama, M. Bull. Chem. Soc. Jpn. 1974, 47, 767. https://doi.org/10.1246/bcsj.47.767
  30. Joshi, H. S.; Jamshidi, R.; Tor, Y. Angew. Chem. Int. Ed. 1999, 38, 2722.
  31. Fang, K.-H.; Wu, L.-L.; Huang, Y.-T.; Yang, C.-H.; Sun, I.-W. Inorganica Chimica Acta 2006, 359, 441. https://doi.org/10.1016/j.ica.2005.10.003
  32. Sheldrick, G. M. Acta Cryst. 2008, A64, 112.
  33. (a) Cao, H.-T.; Shan, G.-G.; Zhang, B.; Li, P.; Sun, S.-L.; Su, Z.-M. J. Mol. Struct. 2012, 1026, 59. https://doi.org/10.1016/j.molstruc.2012.05.004
  34. (b) Hu, T.; Duan, L.; Qiao, J.; He, L.; Zhang, D.; Wang, R.; Wang, L.; Qui, Y. Org. Elect. 2012, 13, 1948. https://doi.org/10.1016/j.orgel.2012.06.005
  35. (c) Shavaleev, N. M.; Scopelliti, R.; Gratzel, M.; Nazeeruddin, M. K. Inorg. Chim. Acta 2013, 396, 17. https://doi.org/10.1016/j.ica.2012.12.004
  36. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.-E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304. https://doi.org/10.1021/ja003693s
  37. (a) Song, Y.-H.; Yeh, S.-J.; Chen, C.-T.; Chi, Y.; Liu, C.-S.; Yu, J.- K.; Hu, Y.-H.; Chou, P.-T.; Peng, S.-M.; Lee, G.-H. Adv. Funct. Mater. 2004, 14, 1221. https://doi.org/10.1002/adfm.200400137
  38. (b) Huang, Y.-T.; Chuang, T.-H.; Shu, Y.- L.; Kuo, Y.-C.; Wu, P.-L.; Yang, C.-H.; Sun, I.-W. Organimetallics 2005, 24, 6230. https://doi.org/10.1021/om050638p
  39. Li, J.; Djurovich, P. I.; Alleyne, B. D.; Yousufuddin, M.; Ho, N. N.; Thomas, J. C.; Peters, R. C.; Bau, R.; Thompson, M. E. Inorg. Chem. 2005, 44, 1713. https://doi.org/10.1021/ic048599h
  40. (a) Lin, C.-H.; Chang, Y.-Y.; Hung, J.-Y.; Lin, C.-Y.; Chi, Y.; Chung, M.-W.; Lin, C.-L.; Chou, P.-T.; Lee, G.-H.; Chang, C.-H.; Lin, W.-C. Angew. Chem. Int. Ed. 2011, 50, 3182. https://doi.org/10.1002/anie.201005624
  41. (b) Luo, S.-X.; Wei, L.; Zhang, X.-H.; Lim, M. H.; Lin, K. X. V.; Yeo, M. H. V.; Zhang, W.-H.; Liu, Z.-P.; Young, D. J.; Hor, T. S. A. Organometallics 2013, 32, 2908. https://doi.org/10.1021/om400028n
  42. (a) Lo, S. C.; Shipley, C. P.; Bera, R. N.; Harding, R. E.; Cowley, A. R.; Burn, P. L.; Samuel, I. D. W. Chem. Mater. 2006, 18, 5119.
  43. (b) Ho, C. L.; Wong, W. Y.; Zhou, G. J.; Xie, Z.; Wang, L. Adv. Funct. Mater. 2007, 17, 2925. https://doi.org/10.1002/adfm.200601205
  44. (a) Wilde, A. P.; King, K. A.; Watts, R. J. J. Phys. Chem. 1991, 95, 629. https://doi.org/10.1021/j100155a026
  45. (b) Wilde, A. P.; King, K. A.; Watts, R. J. J. Phys. Chem. 1991, 95, 629. https://doi.org/10.1021/j100155a026
  46. (c) Columbo, M. C.; Hauser, A.; Gudel, H. U. Top. Curr. Chem. 1994, 171, 143. https://doi.org/10.1007/3-540-58155-3_5
  47. (a) Garces, F. O.; King, K. A.; Watts, R. J. Inorg. Chem. 1998, 27, 3464.
  48. (b) Wang, Y.; Herron, N.; Grushin, V. V.; LeCloux, D.; Petrov, V. Appl. Phys. Lett. 2001, 79, 449. https://doi.org/10.1063/1.1384903
  49. Seo, H.-J.; Heo, Y.-M.; Jin, S.-H.; Yook, K. S.; Lee, J. Y.; Kang, S. K.; Kim, Y.-I. J. Luminescence 2010, 130, 1694. https://doi.org/10.1016/j.jlumin.2010.03.034
  50. Tang, H.; Li, Y.; Zhao, B.; Yang, W.; Wu, H.; Cao, Y. Org. Elect. 2012, 13, 3211. https://doi.org/10.1016/j.orgel.2012.09.035
  51. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Kwong, R.; Tsyba, I.; Bortz, M.; Mui, B.; Bau, R.; Thompson, M. E. Inorg. Chem. 2001, 40, 1704. https://doi.org/10.1021/ic0008969
  52. Chang, W.-C.; Hu, A. T.; Duan, J.-P.; Rayabarapu, D. K.; Cheng, C.-H. J. Organomet. Chem. 2004, 689, 4882. https://doi.org/10.1016/j.jorganchem.2004.07.003
  53. Cole, J. M.; Bowes, K. F.; Clark, I. P.; Low, K. S.; Zeidler, A.; Parker, A. W.; Laskar, I. R.; Chen, T.-M. Cryst. Growth. Des. 2013, 13, 1826. https://doi.org/10.1021/cg301386s
  54. Ma, A.-F.; Seo, H.-J.; Jin, S.-H.; Yoon, U. C.; Hyun, M. H.; Kang, S. K.; Kim, Y.-I. Bull. Korean Chem. Soc. 2009, 30, 2754. https://doi.org/10.5012/bkcs.2009.30.11.2754
  55. Wu, C.; Chen, H.-F.; Wong, K.-T.; Thompson, M. E. J. Am. Chem. Soc. 2010, 132, 3133. https://doi.org/10.1021/ja9097725
  56. (a) Hwang, F.-M.; Chen, H.-Y.; Chen, P.-S.; Liu, C.-S.; Chi, Y.; Shu, C.-F.; Wu, F.-I.; Chou, P.-T.; Peng, S.-M.; Lee, G.-H. Inorg. Chem. 2005, 44, 1344. https://doi.org/10.1021/ic0489443
  57. (b) Wu, L.-L.; Yang, C.-H.; Sun, I.-W.; Chu, S.-Y.; Kao, P.-C.; Huang, H.-H. Organimetallics 2007, 26, 2017. https://doi.org/10.1021/om061101u
  58. Sengottuvelan, N.; Yun, S.-J.; Kim, D.-Y.; Hwang, I.-H.; Kang, S. K.; Kim, Y.-I. Bull. Korean Chem. Soc. 2013, 34, 167. https://doi.org/10.5012/bkcs.2013.34.1.167
  59. Du, B.; Wang, L.; Wu, H.; Yang, W.; Zhang, Y.; Lin, R.; Sun, M.; Peng, J.; Cao, Y. Chem. Eur. J. 2007, 13, 7432. https://doi.org/10.1002/chem.200601811

Cited by

  1. Optical and electrochemical characteristics of ethylenediamine complexes of Pt(II) and Ir(III) with metalated 2-phenyl- and 2-naphthylbenzothiazole vol.120, pp.5, 2016, https://doi.org/10.1134/S0030400X16040111
  2. Influence of ligand donor-acceptor properties on the structure, optical, and electrochemical characteristics of Ir(III) complexes with cyclometallated 2-phenylbenzotiazole vol.86, pp.11, 2016, https://doi.org/10.1134/S1070363216110177
  3. Orange-Yellow Phosphorescent Iridium(III) Complex for Solution-processed Organic Light-Emitting Diodes: Structural, Optical and Electroluminescent Properties of Bis(2-phenylbenzothiazole)[2-(2-hydroxyphenyl)benzothiazole]iridium(III) vol.38, pp.6, 2017, https://doi.org/10.1002/bkcs.11144