DOI QR코드

DOI QR Code

Lanthanum Oxide-catalyzed Transesterification of Dimethyl Carbonate with Glycerol: Effect of Surfactant

  • Lim, Seung Rok (Department of Chemistry and Basic Research Institute of Science, Kyung Hee University) ;
  • Lee, Sang Deuk (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Kim, Hoon Sik (Department of Chemistry and Basic Research Institute of Science, Kyung Hee University) ;
  • Simanjuntak, Fidelis Stefanus Hubertson (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Lee, Hyunjoo (Clean Energy Research Center, Korea Institute of Science and Technology)
  • Received : 2014.05.14
  • Accepted : 2014.05.21
  • Published : 2014.11.20

Abstract

Three kinds of lanthanum oxides ($La_2CO_3$) were synthesized from different methods and used as a catalyst in the transesterification of dimethyl carbonate (DMC) with glycerol for the synthesis of glycerol carbonate (GLC). Lanthanum oxide synthesized using a surfactant (S-La) showed a much higher GLC yield of 89.9% compared to other lanthanum oxides synthesized by calcination (C-La) and precipitation (P-La) at the reaction conditions of $90^{\circ}C$, DMC/glycerol = 2, and catalyst/glycerol = 5 wt %. The best catalyst was obtained when the surfactant/La weight ratio was 12. XRD study revealed that S-La has large amount of monoclinic and hexagonal $La_2O_2CO_3$ phases, which are assumed as active sites of the catalyst for the reaction.

Keywords

References

  1. Huang, P.; Zhao, Y.; Zhang, J.; Zhu, Y.; Sun, Y. Nanoscale 2013, 5, 10844. https://doi.org/10.1039/c3nr03617k
  2. Yang, J. C.; Nie, Z. R.; Wang, Y. M. Appl. Surf. Sci. 2003, 215, 87. https://doi.org/10.1016/S0169-4332(03)00311-8
  3. Wang, S.; Wang, W.; Qian, Y. Thin Solid Films 2000, 372, 50. https://doi.org/10.1016/S0040-6090(00)01035-X
  4. Chen, W.; Kang, Z.; Ding, B. Mater Lett. 2005, 59, 1138. https://doi.org/10.1016/j.matlet.2004.09.055
  5. Imanaka, N.; Okamoto, K.; Adachi, N. G. Electrochem. Commun. 2001, 3, 49. https://doi.org/10.1016/S1388-2481(00)00147-8
  6. Taylor, R.; Schrader, G. Ind. Eng. Chem. Res. 1991, 30, 1016. https://doi.org/10.1021/ie00053a025
  7. Fukuda, Y.; Hattori, H.; Tanabe, K. Bull. Chem. Soc. Jpn. 1978, 51, 3150. https://doi.org/10.1246/bcsj.51.3150
  8. Imizum, Y.; Sato, K.; Hattori, H. J. Catal. 1982, 76, 65. https://doi.org/10.1016/0021-9517(82)90237-8
  9. Valange, S.; Beauchaud, A.; Barrault, J.; Gabelica, Z.; Daturi, M.; Can, F. J. Catal. 2007, 251, 113. https://doi.org/10.1016/j.jcat.2007.07.004
  10. Mentus, S.; Jeli, D.; Grudic, V. J. Therm. Anal. Calorim. 2007, 90, 393. https://doi.org/10.1007/s10973-006-7603-5
  11. Neumann, A.; Walter, D. Thermochim. Acta 2006, 445, 200. https://doi.org/10.1016/j.tca.2005.06.013
  12. Ozawa, M.; Onoe, R.; Kato, H. J. Alloy Comp. 2006, 408-412, 556. https://doi.org/10.1016/j.jallcom.2004.12.073
  13. Zhang, N.; Yi, R.; Zhou, L. B.; Gao, G. H.; Shi, R. G. Mater. Chem. Phys. 2009, 114, 160. https://doi.org/10.1016/j.matchemphys.2008.09.004
  14. Tang, B.; Ge, J.; Wu, C.; Zhuo, L.; Niu, J.; Chen, Z.; Shi, Z.; Dong, Y. Nanotechnology 2004,15, 1273. https://doi.org/10.1088/0957-4484/15/9/027
  15. Frey, A. M.; Bitter, J. H.; de Jong, K. P. ChemCatChem. 2010, 3, 1193.
  16. Simanjuntak, F. S. H.; Tanda, V. T.; Kim, C. S.; Ahn, B. S.; Kim, Y. J.; Lee, H. Chem. Eng. Sci. 2013, 94, 265. https://doi.org/10.1016/j.ces.2013.01.070
  17. Frey, A. M.; Karmee, S. K.; Bitter, J. H.; de Jong, K. P.; Hanefeld, U. ChemCatChem. 2013, 5, 594. https://doi.org/10.1002/cctc.201200282
  18. Kim, M.; Maggio, C. D.; Yan, S.; Salley, S. O.; Ng, K. Y. S. Green Chem. 2011, 13, 334. https://doi.org/10.1039/c0gc00828a
  19. Mu, Q. Y.; Wang, Y. D. J. Alloys Compd. 2011, 509, 396. https://doi.org/10.1016/j.jallcom.2010.09.041
  20. Huntsman Corporation, $JEFFSOL{(R)}$ Glycerine Carbonate, 2009, http://www.huntsman.com/performance_products/Media/JEFFSOL%20Glycerine%20Carbonate.pdf.
  21. Randall, D.; De Vos, R. Eur. Patent EP 419114, 1991.
  22. Weuthen, M.; Hees, U. Ger. Patent DE 4335947, 1995.
  23. Rokicki, G.; Rakoczy, P.; Parzuchowski, P.; Sobiecki, M. Green Chem. 2005, 7, 529. https://doi.org/10.1039/b501597a
  24. Ubaghs, L.; Fricke, N.; Keul, H.; Hocker, H. Macromol. Rapid Commun. 2004, 25, 517. https://doi.org/10.1002/marc.200300064
  25. Aresta, M.; Dibenedetto, A.; Nocito, F.; Pastore, C. J. Mol. Catal. A: Chem. 2006, 257, 149. https://doi.org/10.1016/j.molcata.2006.05.021
  26. Aresta, M.; Dibenedetto, A.; Nocito, F.; Ferragina, C. J. Catal. 2009, 268, 106. https://doi.org/10.1016/j.jcat.2009.09.008
  27. Climent, M. J.; Corma, A.; De Fruto, P.; Iborra, S.; Noy, M.; Velty, A.; Concepcion, P. J. Catal. 2010, 269, 140. https://doi.org/10.1016/j.jcat.2009.11.001
  28. Park, J.; Choi, J. S.; Woo, S. K.; Lee, S. D.; Cheong, M.; Kim, H. S.; Lee, H. Appl. Catal. A 2012, 433-434, 35. https://doi.org/10.1016/j.apcata.2012.04.031
  29. Hu, J.; Li, J.; Gu, Y.; Guan, Z.; Mo, W.; Ni, Y. Li, T.; Li, G. Appl. Catal. 2010, 386, 188. https://doi.org/10.1016/j.apcata.2010.07.059
  30. Ochoa-Gomez, J. R.; Gomez-Jimenez-Aberasturi, O.; Maestro- Madurga, B.; Pesquera-Rodriguez, A.; Ramirez-Lopez, C.; Lorenzo-Ibarreta, L.; Torrecilla-Soria, J.; Villaran-Velasco, M. C. Appl. Catal. A 2009, 366, 315. https://doi.org/10.1016/j.apcata.2009.07.020
  31. Simanjuntak, F. S. H.; Kim, T. K.; Lee, S. D.; Ahn, B. S.; Kim, H. S.; Lee, H. Appl. Catal. A 2011, 401, 220. https://doi.org/10.1016/j.apcata.2011.05.024
  32. Ochoa-Gomez, J. R.; Gomez-Jimenez-Aberasturi, O.; Ramirez-Lopez, C.; Maestro-Madurga, B. Green Chem. 2012, 14, 3368. https://doi.org/10.1039/c2gc35992h
  33. Takagaki, A.; Iwatana, K.; Nishimura, S.; Ebitani, K. Green Chem. 2010, 12, 578. https://doi.org/10.1039/b925404h
  34. Malyaadri, M.; Jagadeeswaraiah, K.; Sai Prasad, P. S.; Lingaiah, N. Appl. Catal. A 2011, 401, 153. https://doi.org/10.1016/j.apcata.2011.05.011
  35. Taylor, R.; Schrader, G. Ind. Eng. Chem. Res. 1991, 30, 1016. https://doi.org/10.1021/ie00053a025
  36. Kijenski, J.; Radomski, P.; Fedorynska, E. J. Catal. 2001, 203, 407. https://doi.org/10.1006/jcat.2001.3327

Cited by

  1. Process intensification for tertiary amine catalyzed glycerol carbonate production: translating microwave irradiation to a continuous-flow process vol.5, pp.27, 2015, https://doi.org/10.1039/C5RA02117K
  2. Recent Development of Heterogeneous Catalysis in the Transesterification of Glycerol to Glycerol Carbonate vol.9, pp.7, 2014, https://doi.org/10.3390/catal9070581