DOI QR코드

DOI QR Code

Simple Pyrene Derivatives as Fluorescence Sensors for TNT and RDX in Micelles

  • Received : 2014.06.13
  • Accepted : 2014.07.02
  • Published : 2014.11.20

Abstract

Various pyrene derivatives were synthesized and systematically examined in micelles. Synthesized mono and bispyrene derivatives were tested in micelles so that they displayed a strong excimer band and the excimer band was quenched in the presence of TNT and RDX. In the optimized condition, the binding constant for TNT of a simple dipyrene derivative 4 was increased up to $1.0{\times}10^6M^{-1}$ in cetyl trimethylammonium bromide (CTAB) micelles, which allowed for the detection of 2 ppb of TNT and 334 ppb of RDX by fluorescence titrations.

Keywords

References

  1. (a) Steinfeld, J. I.; Wormhoudt, J. Annu. Rev. Phys. Chem. 1998, 49, 203. https://doi.org/10.1146/annurev.physchem.49.1.203
  2. (b) Rouhi, A. M. Chem. Eng. News 1997, 75, 14.
  3. (c) Yinon, J. Anal. Chem. 2003, 75, 99A.
  4. (a) Moore, D. S. Rev. Sci. Instrum. 2004, 75, 2499. https://doi.org/10.1063/1.1771493
  5. (b) Czarnik, A. W. Nature 1998, 394, 417. https://doi.org/10.1038/28728
  6. (c) Hakansson, K. R.; Coorey, V.; Zubarev, R. A.; Talrose, V. L.; Hakansson, P. J. Mass Spectrom. 2000, 35, 337. https://doi.org/10.1002/(SICI)1096-9888(200003)35:3<337::AID-JMS940>3.0.CO;2-7
  7. (d) Sylvia, J. M.; Janni, J. A.; Kleinand, J. D.; Spencer, K. M. Anal. Chem. 2000, 72, 5834. https://doi.org/10.1021/ac0006573
  8. (a) Madhu, S.; Bandela, A.; Ravikanth, M. RSC. Adv. 2014, 4, 7120. https://doi.org/10.1039/c3ra46565a
  9. (b) Kim, S. K.; Lim, J. M.; Pradhan, T.; Jung, H. S.; Lynch, V. M.; Kim, J. S.; Kim, D.; Sessler, J. L. J. Am. Chem. Soc. 2013, 136, 495.
  10. (c) Venkatramaiah, N.; Kumar, S.; Patil, S. Chem. Commun. 2012, 5007.
  11. (d) Zhang, S. J.; Ding, L. P.; Lu, F. T.; Liu, T. H.; Fang, Y. Spectrochim. Acta A 2012, 97, 31. https://doi.org/10.1016/j.saa.2012.04.041
  12. (e) Wang, Y.; La, A.; Ding, Y.; Liu, Y. X.; Lei, Y. Adv. Funct. Mater. 2012, 22, 3547. https://doi.org/10.1002/adfm.201200047
  13. (f) Shanmugaraju, S.; Joshi, S. A.; Mukherjee, P. S. Mater Chem. 2011, 21, 9130. https://doi.org/10.1039/c1jm10406c
  14. (g) Lee, Y. H.; Liu, H.; Lee, J. Y.; Kim, S. H.; Kim, S. K.; Sessler, J. L.; Kim, Y.; Kim, J. S. Chem. Eur. J. 2010, 16, 5818. https://doi.org/10.1002/chem.201090094
  15. (h) Zhang, S. J.; Lu, F. T.; Gao, L. N.; Ding, L. P.; Fang, Y. Langmuir 2007, 23, 1584. https://doi.org/10.1021/la062773s
  16. Salinas, Y.; Martinez-Manez, R.; Marcos, M. D.; Sancenon, F.; Costero, A. M.; Parra, M.; Gil, S. Chem. Soc. Rev. 2012, 41, 1261. https://doi.org/10.1039/c1cs15173h
  17. Goodpaster, J. V.; McGuffin, V. L. Anal. Chem. 2001, 73, 2004. https://doi.org/10.1021/ac001347n
  18. (a) Andrew, T. L.; Swager, T. M. J. Org. Chem. 2011, 76, 2976. https://doi.org/10.1021/jo200280c
  19. (b) Andrew, T. L.; Swager, T. M. J. Am. Chem. Soc. 2007, 129, 7254. https://doi.org/10.1021/ja071911c
  20. Freeman, R.; Willner, I. Nano Lett. 2009, 9, 322. https://doi.org/10.1021/nl8030532
  21. Freeman, R.; Finder, T.; Bahshi, L.; Gill, R.; Willner, I. Adv. Mater. 2012, 24, 6416. https://doi.org/10.1002/adma.201202793
  22. Kim, S.-B.; Lee, E.-B.; Choi, J.-H.; Cho, D.-G. Tetrahedron 2013, 69, 4652. https://doi.org/10.1016/j.tet.2013.03.108
  23. Hughes, A. D.; Glenn, I. C.; Patrick, A. D.; Ellington, A.; Anslyn, E. V. Chem. Eur. J. 2008, 14, 1822. https://doi.org/10.1002/chem.200701546
  24. Ingale, S. A. Seela, F. J. Org. Chem. 2012, 77, 9352. https://doi.org/10.1021/jo3014319
  25. Caligur, V. BioFiles 2008, 3, 13.
  26. Ipe, B. I.; Thomas, K. G. J. Phy. Chem. B 2004, 108, 13265. https://doi.org/10.1021/jp048321a
  27. US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, 1995.

Cited by

  1. π-Electron rich small molecule sensors for the recognition of nitroaromatics vol.51, pp.89, 2015, https://doi.org/10.1039/C5CC07513K
  2. Fluorescent Detection of 2,4-DNT and 2,4,6-TNT in Aqueous Media by Using Simple Water-Soluble Pyrene Derivatives vol.11, pp.5, 2016, https://doi.org/10.1002/asia.201501310
  3. Extended cavity pyrene-based iptycenes for the turn-off fluorescence detection of RDX and common nitroaromatic explosives vol.41, pp.6, 2017, https://doi.org/10.1039/C6NJ02956F
  4. 1-Hydroxypyrene-based micelle-forming sensors for the visual detection of RDX/TNG/PETN-based bomb plots in water pp.1369-9261, 2018, https://doi.org/10.1039/C8NJ03807D
  5. Rational synthetic methods in creating promising (hetero)aromatic molecules and materials vol.30, pp.5, 2014, https://doi.org/10.1016/j.mencom.2020.09.001