References
- (a) Steinfeld, J. I.; Wormhoudt, J. Annu. Rev. Phys. Chem. 1998, 49, 203. https://doi.org/10.1146/annurev.physchem.49.1.203
- (b) Rouhi, A. M. Chem. Eng. News 1997, 75, 14.
- (c) Yinon, J. Anal. Chem. 2003, 75, 99A.
- (a) Moore, D. S. Rev. Sci. Instrum. 2004, 75, 2499. https://doi.org/10.1063/1.1771493
- (b) Czarnik, A. W. Nature 1998, 394, 417. https://doi.org/10.1038/28728
- (c) Hakansson, K. R.; Coorey, V.; Zubarev, R. A.; Talrose, V. L.; Hakansson, P. J. Mass Spectrom. 2000, 35, 337. https://doi.org/10.1002/(SICI)1096-9888(200003)35:3<337::AID-JMS940>3.0.CO;2-7
- (d) Sylvia, J. M.; Janni, J. A.; Kleinand, J. D.; Spencer, K. M. Anal. Chem. 2000, 72, 5834. https://doi.org/10.1021/ac0006573
- (a) Madhu, S.; Bandela, A.; Ravikanth, M. RSC. Adv. 2014, 4, 7120. https://doi.org/10.1039/c3ra46565a
- (b) Kim, S. K.; Lim, J. M.; Pradhan, T.; Jung, H. S.; Lynch, V. M.; Kim, J. S.; Kim, D.; Sessler, J. L. J. Am. Chem. Soc. 2013, 136, 495.
- (c) Venkatramaiah, N.; Kumar, S.; Patil, S. Chem. Commun. 2012, 5007.
- (d) Zhang, S. J.; Ding, L. P.; Lu, F. T.; Liu, T. H.; Fang, Y. Spectrochim. Acta A 2012, 97, 31. https://doi.org/10.1016/j.saa.2012.04.041
- (e) Wang, Y.; La, A.; Ding, Y.; Liu, Y. X.; Lei, Y. Adv. Funct. Mater. 2012, 22, 3547. https://doi.org/10.1002/adfm.201200047
- (f) Shanmugaraju, S.; Joshi, S. A.; Mukherjee, P. S. Mater Chem. 2011, 21, 9130. https://doi.org/10.1039/c1jm10406c
- (g) Lee, Y. H.; Liu, H.; Lee, J. Y.; Kim, S. H.; Kim, S. K.; Sessler, J. L.; Kim, Y.; Kim, J. S. Chem. Eur. J. 2010, 16, 5818. https://doi.org/10.1002/chem.201090094
- (h) Zhang, S. J.; Lu, F. T.; Gao, L. N.; Ding, L. P.; Fang, Y. Langmuir 2007, 23, 1584. https://doi.org/10.1021/la062773s
- Salinas, Y.; Martinez-Manez, R.; Marcos, M. D.; Sancenon, F.; Costero, A. M.; Parra, M.; Gil, S. Chem. Soc. Rev. 2012, 41, 1261. https://doi.org/10.1039/c1cs15173h
- Goodpaster, J. V.; McGuffin, V. L. Anal. Chem. 2001, 73, 2004. https://doi.org/10.1021/ac001347n
- (a) Andrew, T. L.; Swager, T. M. J. Org. Chem. 2011, 76, 2976. https://doi.org/10.1021/jo200280c
- (b) Andrew, T. L.; Swager, T. M. J. Am. Chem. Soc. 2007, 129, 7254. https://doi.org/10.1021/ja071911c
- Freeman, R.; Willner, I. Nano Lett. 2009, 9, 322. https://doi.org/10.1021/nl8030532
- Freeman, R.; Finder, T.; Bahshi, L.; Gill, R.; Willner, I. Adv. Mater. 2012, 24, 6416. https://doi.org/10.1002/adma.201202793
- Kim, S.-B.; Lee, E.-B.; Choi, J.-H.; Cho, D.-G. Tetrahedron 2013, 69, 4652. https://doi.org/10.1016/j.tet.2013.03.108
- Hughes, A. D.; Glenn, I. C.; Patrick, A. D.; Ellington, A.; Anslyn, E. V. Chem. Eur. J. 2008, 14, 1822. https://doi.org/10.1002/chem.200701546
- Ingale, S. A. Seela, F. J. Org. Chem. 2012, 77, 9352. https://doi.org/10.1021/jo3014319
- Caligur, V. BioFiles 2008, 3, 13.
- Ipe, B. I.; Thomas, K. G. J. Phy. Chem. B 2004, 108, 13265. https://doi.org/10.1021/jp048321a
- US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, 1995.
Cited by
- π-Electron rich small molecule sensors for the recognition of nitroaromatics vol.51, pp.89, 2015, https://doi.org/10.1039/C5CC07513K
- Fluorescent Detection of 2,4-DNT and 2,4,6-TNT in Aqueous Media by Using Simple Water-Soluble Pyrene Derivatives vol.11, pp.5, 2016, https://doi.org/10.1002/asia.201501310
- Extended cavity pyrene-based iptycenes for the turn-off fluorescence detection of RDX and common nitroaromatic explosives vol.41, pp.6, 2017, https://doi.org/10.1039/C6NJ02956F
- 1-Hydroxypyrene-based micelle-forming sensors for the visual detection of RDX/TNG/PETN-based bomb plots in water pp.1369-9261, 2018, https://doi.org/10.1039/C8NJ03807D
- Rational synthetic methods in creating promising (hetero)aromatic molecules and materials vol.30, pp.5, 2014, https://doi.org/10.1016/j.mencom.2020.09.001