References
- Moss, G. P.; Smith, P. A. S.; Tavernier, D. Pure Appl. Chem. 2009, 67, 1307.
- Chambers, J. Q. The Chemistry of Quinonoid Compounds; Patai, S., Ed.; John Wiley & Sons: Ltd., pp 737-791.
- Chambers, J. Q. The Chemistry of Quinonoid Compounds; Patai, S., Rappaport, Z., Eds.; Great Britain: John Wiley & Sons: pp 719-757.
- Gunner, M. R.; Madeo, J.; Zhu, Z. J. Bioenerg. Biomembr. 2008, 40, 509. https://doi.org/10.1007/s10863-008-9179-1
- Osyczka, A.; Moser, C. C.; Dutton, P. L. Trends Biochem. Sci. 2005, 30, 176. https://doi.org/10.1016/j.tibs.2005.02.001
- Bolton, J. L.; Trush, M. A.; Penning, T. M.; Dryhurst, G.; Monks, T. J. Chem. Res. Toxicol. 2000, 13, 135. https://doi.org/10.1021/tx9902082
- Hillard, E. A.; Abreu, F. C. de, Ferreira, D. C. M.; Jaouen, G.; Goulart, M. O. F.; Amatore, C. Chem. Commun. 2008, 2612.
- Costentin, C.; Robert, M.; Saveant, J.-M. Chem. Rev. 2010, 110, PR1. https://doi.org/10.1021/cr900384b
- Cabaniss, G. E.; Diamantis, A. A.; Murphy, W. R.; Linton, R. W.; Meyer, T. J. J. Am. Chem. Soc. 1985, 107, 1845. https://doi.org/10.1021/ja00293a007
- DuVall, S. H.; McCreery, R. L. Anal. Chem. 1999, 71, 4594. https://doi.org/10.1021/ac990399d
- Forster, R. J.; O'Kelly, J. P. J. Electroanal. Chem. 2001, 498, 127. https://doi.org/10.1016/S0022-0728(00)00331-4
- Chaudhari, V. R.; Bhat, M. A.; Ingole, P. P.; Haram, S. K. Electrochem. Commun. 2009, 11, 994. https://doi.org/10.1016/j.elecom.2009.02.046
- Eggins, B. R.; Chambers, J. Q. J. Electrochem. Soc. 1970, 117, 186. https://doi.org/10.1149/1.2407462
- Gupta, N.; Linschitz, H. J. Am. Chem. Soc. 1997, 119, 6384. https://doi.org/10.1021/ja970028j
- Aguilar-Martinez, M.; Macias-Ruvalcaba, N. A.; Bautista-Martinez, J. A.; Gomez, M.; Gonzalez, F. J.; Gonzalez, I. Curr. Org. Chem. 2004, 8, 1721. https://doi.org/10.2174/1385272043369548
- Gomez, M.; Gonzalez, F. J.; Gonzalez, I. J. Electroanal. Chem. 2005, 578, 193. https://doi.org/10.1016/j.jelechem.2004.12.036
- Guin, P. S.; Das, S.; Mandal, P. C. Int. J. Electrochem. 2011, 2011, 1.
- Hui, Y.; Chng, E. L. K.; Chng, C. Y. L.; Poh, H. L.; Webster, R. D. J. Am. Chem. Soc. 2009, 131, 1523. https://doi.org/10.1021/ja8080428
- Quan, M.; Sanchez, D.; Wasylkiw, M. F.; Smith, D. K. J. Am. Chem. Soc. 2007, 129, 12847. https://doi.org/10.1021/ja0743083
- Shim, Y.-B.; Park, S.-M. J. Electroanal. Chem. 1997, 425, 201. https://doi.org/10.1016/S0022-0728(96)04956-X
- Laviron, E. J. Electroanal Chem Interfacial Electrochem. 1984, 164, 213. https://doi.org/10.1016/S0022-0728(84)80207-7
- Eigen, M. Discuss. Faraday Soc. 1965, 39, 7. https://doi.org/10.1039/df9653900007
- Bailey, S. I.; Ritchie, I. M.; Hewgill, F. R. J. Chem. Soc. Perkin Trans. 2 1983, 645.
- Bailey, S. I.; Ritchie, I. M. Electrochimica Acta 1985, 30, 3. https://doi.org/10.1016/0013-4686(85)80051-7
- Song, Y.; Buettner, G. R. Free Radic. Biol. Med. 2010, 49, 919. https://doi.org/10.1016/j.freeradbiomed.2010.05.009
- Roginsky, V. A.; Pisarenko, L. M.; Bors, W.; Michel, C. J. Chem. Soc. Perkin Trans. 2 1999, 871.
- Hong, H.-G.; Park, W. Langmuir 2001, 17, 2485. https://doi.org/10.1021/la001466y
- Lemmer, C.; Bouvet, M.; Meunier-Prest, R. Phys. Chem. Chem. Phys. 2011, 13, 13327. https://doi.org/10.1039/c0cp02700f
- Laviron, E. J. Electroanal. Chem. Interfacial Electrochem. 1983, 146, 15. https://doi.org/10.1016/S0022-0728(83)80110-7
- Laviron, E. J. Electroanal. Chem. 1979, 101, 19. https://doi.org/10.1016/S0022-0728(79)80075-3
- Trammell, S. A.; Lebedev, N. J. Electroanal. Chem. 2009, 632, 127. https://doi.org/10.1016/j.jelechem.2009.04.007
- Zhang, W.; Burgess, I. J. Phys. Chem. Chem. Phys. 2011, 13, 2151. https://doi.org/10.1039/c0cp01251c
- Marchal, D.; Boireau, W.; Laval, J. M.; Bourdillon, C.; Moiroux, J. J. Electroanal. Chem. 1998, 451, 139. https://doi.org/10.1016/S0022-0728(98)00076-X
- Batchelor-McAuley, C.; Li, Q.; Dapin, S. M.; Compton, R. G. J. Phys. Chem. B 2010, 114, 4094. https://doi.org/10.1021/jp1008187
- Costentin, C.; Louault, C.; Robert, M.; Saveant, J.-M. Proc. Natl. Acad. Sci. 2009, 106, 18143. https://doi.org/10.1073/pnas.0910065106
- Medina-Ramos, J.; Oyesanya, O.; Alvarez, J. C. J. Phys. Chem. C 2013, 117, 902. https://doi.org/10.1021/jp3111265
- Anxolabehere-Mallart, E.; Costentin, C.; Policar, C.; Robert, M.; Saveant, J.-M.; Teillout, A.-L. Faraday Discuss. 2010, 148, 83.
- Song, N.; Gagliardi, C. J.; Binstead, R. A.; Zhang, M.-T.; Thorp, H.; Meyer, T. J. J. Am. Chem. Soc. 2012, 134, 18538. https://doi.org/10.1021/ja308700t
- Bae, J. H.; Kim, Y.-R.; Kim, R. S.; Chung, T. D. Phys. Chem. Chem. Phys. 2013, 15, 10645. https://doi.org/10.1039/c3cp50175b
- Moncelli, M. R.; Herrero, R.; Becucci, L.; Guidelli, R. Biochim. Biophys. Acta BBA - Bioenerg. 1998, 1364, 373. https://doi.org/10.1016/S0005-2728(98)00061-9
- Gamage, R. S. K. A.; McQuillan, A. J.; Peake, B. M. J. Chem. Soc. Faraday Trans. 1991, 87, 3653. https://doi.org/10.1039/ft9918703653
- Li, Q.; Batchelor-McAuley, C.; Lawrence, N. S.; Hartshorne, R. S.; Compton, R. G. Chem. Commun. 2011, 11426.
- Kim, Y.-R.; Kim, R. S.; Kang, S. K.; Choi, M. G.; Kim, H. Y.; Cho, D.; Lee, J. Y.; Chang, S.-K.; Chung, T. D. J. Am. Chem. Soc. 2013, 135, 18957. https://doi.org/10.1021/ja410406e
- Sato, A.; Takagi, K.; Kano, K.; Kato, N.; Duine, J.; Ikeda, T. Biochem. J. 2001, 357, 893. https://doi.org/10.1042/0264-6021:3570893
- Buchachenko, A. L. Pure Appl. Chem. 2000, 72, 2243.
- Roginsky, V.; Barsukova, T. J. Chem. Soc. Perkin Trans. 2 2000, 1575.
- Lebedev, A. V.; Ivanova, M. V.; Ruuge, E. K. Arch. Biochem. Biophys. 2003, 413, 191. https://doi.org/10.1016/S0003-9861(03)00111-5
- Lebedev, A. V.; Ivanova, M. V.; Timoshin, A. A.; Ruuge, E. K. ChemPhysChem 2007, 8, 1863. https://doi.org/10.1002/cphc.200700296
- O'Malley, P. J. J. Phys. Chem. A 1998, 102, 248. https://doi.org/10.1021/jp972467a
- Kaupp, M.; Remenyi, C.; Vaara, J.; Malkina, O. L.; Malkin, V. G. J. Am. Chem. Soc. 2002, 124, 2709. https://doi.org/10.1021/ja0162764
- Zhao, X.; Imahori, H.; Zhan, C.-G.; Sakata, Y.; Iwata, S.; Kitagawa, T. J. Phys. Chem. A 1997, 101, 622. https://doi.org/10.1021/jp962009m
- Ma, W.; Long, Y.-T. Chem. Soc. Rev. 2013, 43, 30.
- Darwish, N.; Eggers, P. K.; Ciampi, S.; Tong, Y.; Ye, S.; Paddon- Row, M. N.; Gooding, J. J. J. Am. Chem. Soc. 2012, 134, 18401. https://doi.org/10.1021/ja307665k
- Kwon, Y.; Mrksich, M. J. Am. Chem. Soc. 2002, 124, 806. https://doi.org/10.1021/ja010740n
- Kim, R. S.; Park, W.; Hong, H.; Chung, T. D.; Kim, S. Electrochem. Commun. 2014, 41, 39. https://doi.org/10.1016/j.elecom.2014.01.005
- Abhayawardhana, A. D.; Sutherland, T. C. J. Phys. Chem. C 2009, 113, 4915.
- Chung, T. D.; Anson, F. C. Anal. Chem. 2001, 73, 337. https://doi.org/10.1021/ac0009447
- Henstridge, M. C.; Wildgoose, G. G.; Compton, R. G. Langmuir 2010, 26, 1340. https://doi.org/10.1021/la902418v
- Bae, J. H.; Kim, Y.-R.; Kim, R. S.; Chung, T. D. Phys. Chem. Chem. Phys. 2013, 15, 10645. https://doi.org/10.1039/c3cp50175b
- Trammell, S. A.; Seferos, D. S.; Moore, M.; Lowy, D. A.; Bazan, G. C.; Kushmerick, J. G.; Lebedev, N. Langmuir 2007, 23, 942. https://doi.org/10.1021/la061555w
- Trammell, S. A.; Moore, M.; Schull, T. L.; Lebedev, N. J. Electroanal. Chem. 2009, 628, 125. https://doi.org/10.1016/j.jelechem.2009.01.023
- Hong, H.-G.; Park, W. Bull. Korean Chem. Soc. 2005, 26, 1885. https://doi.org/10.5012/bkcs.2005.26.11.1885
- Trammell, S. A.; Lowy, D. A.; Seferos, D. S.; Moore, M.; Bazan, G. C.; Lebedev, N. J. Electroanal. Chem. 2007, 606, 33. https://doi.org/10.1016/j.jelechem.2007.04.008
- Razzaq, H.; Qureshi, R.; Schiffrin, D. J. Electrochem. Commun. 2014, 39, 9. https://doi.org/10.1016/j.elecom.2013.12.002
- Petrangolini, P.; Alessandrini, A.; Berti, L.; Facci, P. J. Am. Chem. Soc. 2010, 132, 7445. https://doi.org/10.1021/ja101666q
- Petrangolini, P.; Alessandrini, A.; Navacchia, M. L.; Capobianco, M. L.; Facci, P. J. Phys. Chem. C 2011, 115, 19971. https://doi.org/10.1021/jp208343z
- Petrangolini, P.; Alessandrini, A.; Facci, P. J. Phys. Chem. C 2013, 117, 17451. https://doi.org/10.1021/jp405516z
- Darwish, N.; Diez-Perez, I.; Guo, S.; Tao, N.; Gooding, J. J.; Paddon-Row, M. N. J. Phys. Chem. C 2012, 116, 21093. https://doi.org/10.1021/jp3066458
- Tse, D. C.-S.; Kuwana, T. Anal. Chem. 1978, 50, 1315. https://doi.org/10.1021/ac50031a030
- Carlson, B. W.; Miller, L. L. J. Am. Chem. Soc. 1985, 107, 479. https://doi.org/10.1021/ja00288a035
- Murthy, A. S. N.; Sharma, J. Talanta 1998, 45, 951. https://doi.org/10.1016/S0039-9140(97)00201-4
- Katz, E.; Lotzbeyer, T.; Schlereth, D. D.; Schuhmann, W.; Schmidt, H.-L. J. Electroanal. Chem. 1994, 73, 189.
- Zhang, J.; Seo, K.; Jeon, I. C. Anal. Bioanal. Chem. 2003, 375, 539.
- Umezawa, N.; Tsurunari, M.; Kondo, T. Chem. Lett. 2009, 38, 766. https://doi.org/10.1246/cl.2009.766
- Willner, I.; Riklin, A. Anal. Chem. 1994, 66, 1535. https://doi.org/10.1021/ac00081a028
- Bardea, A.; Katz, E.; Buckmann, A. F.; Willner, I. J. Am. Chem. Soc. 1997, 119, 9114. https://doi.org/10.1021/ja971192+
- Willner, I.; Katz, E. Angew. Chem. Int. Ed. 2000, 39, 1180. https://doi.org/10.1002/(SICI)1521-3773(20000403)39:7<1180::AID-ANIE1180>3.0.CO;2-E
- Piro, B.; Reisberg, S.; Anquetin, G.; Duc, H.-T.; Pham, M.-C. Biosensors 2013, 3, 58. https://doi.org/10.3390/bios3010058
- March, G.; Noel, V.; Piro, B.; Reisberg, S.; Pham, M.-C. J. Am. Chem. Soc. 2008, 130, 15752. https://doi.org/10.1021/ja8047255
- March, G.; Reisberg, S.; Piro, B.; Pham, M.-C.; Delamar, M.; Noel, V.; Odenthal, K.; Hibbert, D. B.; Gooding, J. J. J. Electroanal. Chem. 2008, 622, 37. https://doi.org/10.1016/j.jelechem.2008.04.030
- He, X.-P.; Wang, X.-W.; Jin, X.-P.; Zhou, H.; Shi, X.-X.; Chen, G.- R.; Long, Y.-T. J. Am. Chem. Soc. 2011, 133, 3649. https://doi.org/10.1021/ja110478j
- Yeo, W.-S.; Mrksich, M. Angew. Chem. Int. Ed. 2003, 42, 3121. https://doi.org/10.1002/anie.200250862
- Akanda, M. R.; Tamilavan, V.; Park, S.; Jo, K.; Hyun, M. H.; Yang, H. Anal. Chem. 2013, 85, 1631. https://doi.org/10.1021/ac3028855
- Yehezkeli, O.; Tel-Vered, R.; Wasserman, J.; Trifonov, A.; Michaeli, D.; Nechushtai, R.; Willner, I. Nat. Commun. 2012, 3, 742. https://doi.org/10.1038/ncomms1741
- Aulenta, F.; Ferri, T.; Nicastro, D.; Majone, M.; Papini, M. P. New Biotechnol. 2011, 29, 126. https://doi.org/10.1016/j.nbt.2011.04.001
- Adachi, M.; Shimomura, T.; Komatsu, M.; Yakuwa, H.; Miya, A. Chem. Commun. 2008, 2055.
- Feng, C.; Ma, L.; Li, F.; Mai, H.; Lang, X.; Fan, S. Biosens. Bioelectron. 2010, 25, 1516. https://doi.org/10.1016/j.bios.2009.10.009
- Ahmed, J.; Kim, S. Bull. Korean Chem. Soc. 2013, 34, 3649. https://doi.org/10.5012/bkcs.2013.34.12.3649
- Kim, E.; Leverage, W. T.; Liu, Y.; White, I. M.; Bentley, W. E.; Payne, G. F. Analyst 2013, 139, 32.
- Song, Z.; Zhou, H. Energy Environ. Sci. 2013, 6, 2280. https://doi.org/10.1039/c3ee40709h
- Alt, H.; Binder, H.; Kohling, A.; Sandstede, G. Electrochimica Acta 1972, 17, 873. https://doi.org/10.1016/0013-4686(72)90010-2
- Foos, J. S.; Erker, S. M.; Rembetsy, L. M. J. Electrochem. Soc. 1986, 133, 836. https://doi.org/10.1149/1.2108689
- Le Gall, T.; Reiman, K. H.; Grossel, M. C.; Owen, J. R. J. Power Sources 2003, 119-121, 316. https://doi.org/10.1016/S0378-7753(03)00167-8
- Choi, W.; Harada, D.; Oyaizu, K.; Nishide, H. J. Am. Chem. Soc. 2011, 133, 19839. https://doi.org/10.1021/ja206961t
- Suematsu, S.; Naoi, K. J. Power Sources 2001, 97-98, 816. https://doi.org/10.1016/S0378-7753(01)00735-2
- Roldan, S.; Blanco, C.; Granda, M.; Menendez, R.; Santamaria, R. Angew. Chem. - Int. Ed. 2011, 50, 1699. https://doi.org/10.1002/anie.201006811
- Yu, H.; Wu, J.; Fan, L.; Lin, Y.; Xu, K.; Tang, Z.; Cheng, C.; Tang, S.; Lin, J.; Huang, M. et al. J. Power Sources 2012, 198, 402. https://doi.org/10.1016/j.jpowsour.2011.09.110
- Roldan, S.; Granda, M.; Menendez, R.; Santamaria, R.; Blanco, C. J. Phys. Chem. C 2011, 115, 17606. https://doi.org/10.1021/jp205100v
- Huskinson, B.; Marshak, M. P.; Suh, C.; Er, S.; Gerhardt, M. R.; Galvin, C. J.; Chen, X.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J. Nature 2014, 505, 195. https://doi.org/10.1038/nature12909
- Rausch, B.; Symes, M. D.; Cronin, L. J. Am. Chem. Soc. 2013, 135, 13656. https://doi.org/10.1021/ja4071893
- Pichot, F.; Gregg, B. A. J. Phys. Chem. B 2000, 104, 6.
- Cheng, M.; Yang, X.; Zhang, F.; Zhao, J.; Sun, L. Angew. Chem. Int. Ed. 2012, 51, 9896. https://doi.org/10.1002/anie.201205529
Cited by
- Discovery of low energy pathways to metal-mediated BN bond reduction guided by computation and experiment vol.6, pp.12, 2015, https://doi.org/10.1039/C5SC02348C
- Preparation of Thin Melanin-Type Films by Surface-Controlled Oxidation vol.32, pp.16, 2016, https://doi.org/10.1021/acs.langmuir.6b00402
- Quantitative Aspects of the Interfacial Catalytic Oxidation of Dithiothreitol by Dissolved Oxygen in the Presence of Carbon Nanoparticles vol.50, pp.2, 2016, https://doi.org/10.1021/acs.est.5b04958
- Experimental and Theoretical Reduction Potentials of Some Biologically Active ortho-Carbonyl para-Quinones vol.22, pp.4, 2017, https://doi.org/10.3390/molecules22040577
- Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries vol.29, pp.48, 2017, https://doi.org/10.1002/adma.201607007
- Template Synthesis of 2D Carbon Nanosheets: Improving Energy Density of Supercapacitors by Dual Redox Additives Anthraquinone-2-sulfonic Acid Sodium and KI vol.5, pp.7, 2017, https://doi.org/10.1021/acssuschemeng.7b00759
- Electroreduction mechanism of N-phenylhydroxylamines in aprotic solvents: formation of hydrogen bonds between N-(3-nitrophenyl)hydroxylamine and its radical anion vol.66, pp.3, 2017, https://doi.org/10.1007/s11172-017-1758-z
- A High Power Buckypaper Biofuel Cell: Exploiting 1,10-Phenanthroline-5,6-dione with FAD-Dependent Dehydrogenase for Catalytically-Powerful Glucose Oxidation vol.7, pp.7, 2017, https://doi.org/10.1021/acscatal.7b00738
- Immunosensor Employing Stable, Solid 1-Amino-2-naphthyl Phosphate and Ammonia-Borane toward Ultrasensitive and Simple Point-of-Care Testing vol.2, pp.8, 2014, https://doi.org/10.1021/acssensors.7b00407
- Quest for Organic Active Materials for Redox Flow Batteries: 2,3-Diaza-anthraquinones and Their Electrochemical Properties vol.30, pp.3, 2014, https://doi.org/10.1021/acs.chemmater.7b04220
- Extended Operational Lifetime of a Photosystem-Based Bioelectrode vol.141, pp.13, 2014, https://doi.org/10.1021/jacs.8b13869
- Which Parameter is Governing for Aqueous Redox Flow Batteries with Organic Active Material? vol.91, pp.6, 2014, https://doi.org/10.1002/cite.201800162
- A disposable acetylcholine esterase sensor for As(III) determination in groundwater matrix based on 4-acetoxyphenol hydrolysis vol.11, pp.40, 2014, https://doi.org/10.1039/c9ay01199d
- Deactivation of Co-Schiff base catalysts in the oxidation of para-substituted lignin models for the production of benzoquinones vol.10, pp.2, 2014, https://doi.org/10.1039/c9cy02040c
- Rutin as an Electrochemical Mediator in the Determination of Captopril using a Graphite Paste Electrode vol.32, pp.2, 2014, https://doi.org/10.1002/elan.201900145
- Anion Radical of Carbonyl Compounds as Electrochemically Generated Base in Henry Reactions: 1,2-Acenaphthenedione vol.167, pp.15, 2020, https://doi.org/10.1149/1945-7111/ab9eb3