DOI QR코드

DOI QR Code

The Electrochemical Reaction Mechanism and Applications of Quinones

  • Kim, R. Soyoung (Department of Chemistry, Seoul National University) ;
  • Chung, Taek Dong (Department of Chemistry, Seoul National University)
  • Received : 2014.07.08
  • Accepted : 2014.07.23
  • Published : 2014.11.20

Abstract

This tutorial review provides a general account of the electrochemical behavior of quinones and their various applications. Quinone electrochemistry has been investigated for a long time due to its complexity. A simple point of view is developed that considers the relative stability of the reduced quinone species and the values of the first and second reduction potentials. The 9-membered square scheme in buffered aqueous solutions is explained and semiquinone radical stability is discussed in this context. Quinone redox reaction has also been employed in various studies. Diverse examples are presented under three broad categories defined by the roles of quinone: molecular tool for physical chemistry, versatile electron mediator, and charge storage for energy conversion devices.

Keywords

References

  1. Moss, G. P.; Smith, P. A. S.; Tavernier, D. Pure Appl. Chem. 2009, 67, 1307.
  2. Chambers, J. Q. The Chemistry of Quinonoid Compounds; Patai, S., Ed.; John Wiley & Sons: Ltd., pp 737-791.
  3. Chambers, J. Q. The Chemistry of Quinonoid Compounds; Patai, S., Rappaport, Z., Eds.; Great Britain: John Wiley & Sons: pp 719-757.
  4. Gunner, M. R.; Madeo, J.; Zhu, Z. J. Bioenerg. Biomembr. 2008, 40, 509. https://doi.org/10.1007/s10863-008-9179-1
  5. Osyczka, A.; Moser, C. C.; Dutton, P. L. Trends Biochem. Sci. 2005, 30, 176. https://doi.org/10.1016/j.tibs.2005.02.001
  6. Bolton, J. L.; Trush, M. A.; Penning, T. M.; Dryhurst, G.; Monks, T. J. Chem. Res. Toxicol. 2000, 13, 135. https://doi.org/10.1021/tx9902082
  7. Hillard, E. A.; Abreu, F. C. de, Ferreira, D. C. M.; Jaouen, G.; Goulart, M. O. F.; Amatore, C. Chem. Commun. 2008, 2612.
  8. Costentin, C.; Robert, M.; Saveant, J.-M. Chem. Rev. 2010, 110, PR1. https://doi.org/10.1021/cr900384b
  9. Cabaniss, G. E.; Diamantis, A. A.; Murphy, W. R.; Linton, R. W.; Meyer, T. J. J. Am. Chem. Soc. 1985, 107, 1845. https://doi.org/10.1021/ja00293a007
  10. DuVall, S. H.; McCreery, R. L. Anal. Chem. 1999, 71, 4594. https://doi.org/10.1021/ac990399d
  11. Forster, R. J.; O'Kelly, J. P. J. Electroanal. Chem. 2001, 498, 127. https://doi.org/10.1016/S0022-0728(00)00331-4
  12. Chaudhari, V. R.; Bhat, M. A.; Ingole, P. P.; Haram, S. K. Electrochem. Commun. 2009, 11, 994. https://doi.org/10.1016/j.elecom.2009.02.046
  13. Eggins, B. R.; Chambers, J. Q. J. Electrochem. Soc. 1970, 117, 186. https://doi.org/10.1149/1.2407462
  14. Gupta, N.; Linschitz, H. J. Am. Chem. Soc. 1997, 119, 6384. https://doi.org/10.1021/ja970028j
  15. Aguilar-Martinez, M.; Macias-Ruvalcaba, N. A.; Bautista-Martinez, J. A.; Gomez, M.; Gonzalez, F. J.; Gonzalez, I. Curr. Org. Chem. 2004, 8, 1721. https://doi.org/10.2174/1385272043369548
  16. Gomez, M.; Gonzalez, F. J.; Gonzalez, I. J. Electroanal. Chem. 2005, 578, 193. https://doi.org/10.1016/j.jelechem.2004.12.036
  17. Guin, P. S.; Das, S.; Mandal, P. C. Int. J. Electrochem. 2011, 2011, 1.
  18. Hui, Y.; Chng, E. L. K.; Chng, C. Y. L.; Poh, H. L.; Webster, R. D. J. Am. Chem. Soc. 2009, 131, 1523. https://doi.org/10.1021/ja8080428
  19. Quan, M.; Sanchez, D.; Wasylkiw, M. F.; Smith, D. K. J. Am. Chem. Soc. 2007, 129, 12847. https://doi.org/10.1021/ja0743083
  20. Shim, Y.-B.; Park, S.-M. J. Electroanal. Chem. 1997, 425, 201. https://doi.org/10.1016/S0022-0728(96)04956-X
  21. Laviron, E. J. Electroanal Chem Interfacial Electrochem. 1984, 164, 213. https://doi.org/10.1016/S0022-0728(84)80207-7
  22. Eigen, M. Discuss. Faraday Soc. 1965, 39, 7. https://doi.org/10.1039/df9653900007
  23. Bailey, S. I.; Ritchie, I. M.; Hewgill, F. R. J. Chem. Soc. Perkin Trans. 2 1983, 645.
  24. Bailey, S. I.; Ritchie, I. M. Electrochimica Acta 1985, 30, 3. https://doi.org/10.1016/0013-4686(85)80051-7
  25. Song, Y.; Buettner, G. R. Free Radic. Biol. Med. 2010, 49, 919. https://doi.org/10.1016/j.freeradbiomed.2010.05.009
  26. Roginsky, V. A.; Pisarenko, L. M.; Bors, W.; Michel, C. J. Chem. Soc. Perkin Trans. 2 1999, 871.
  27. Hong, H.-G.; Park, W. Langmuir 2001, 17, 2485. https://doi.org/10.1021/la001466y
  28. Lemmer, C.; Bouvet, M.; Meunier-Prest, R. Phys. Chem. Chem. Phys. 2011, 13, 13327. https://doi.org/10.1039/c0cp02700f
  29. Laviron, E. J. Electroanal. Chem. Interfacial Electrochem. 1983, 146, 15. https://doi.org/10.1016/S0022-0728(83)80110-7
  30. Laviron, E. J. Electroanal. Chem. 1979, 101, 19. https://doi.org/10.1016/S0022-0728(79)80075-3
  31. Trammell, S. A.; Lebedev, N. J. Electroanal. Chem. 2009, 632, 127. https://doi.org/10.1016/j.jelechem.2009.04.007
  32. Zhang, W.; Burgess, I. J. Phys. Chem. Chem. Phys. 2011, 13, 2151. https://doi.org/10.1039/c0cp01251c
  33. Marchal, D.; Boireau, W.; Laval, J. M.; Bourdillon, C.; Moiroux, J. J. Electroanal. Chem. 1998, 451, 139. https://doi.org/10.1016/S0022-0728(98)00076-X
  34. Batchelor-McAuley, C.; Li, Q.; Dapin, S. M.; Compton, R. G. J. Phys. Chem. B 2010, 114, 4094. https://doi.org/10.1021/jp1008187
  35. Costentin, C.; Louault, C.; Robert, M.; Saveant, J.-M. Proc. Natl. Acad. Sci. 2009, 106, 18143. https://doi.org/10.1073/pnas.0910065106
  36. Medina-Ramos, J.; Oyesanya, O.; Alvarez, J. C. J. Phys. Chem. C 2013, 117, 902. https://doi.org/10.1021/jp3111265
  37. Anxolabehere-Mallart, E.; Costentin, C.; Policar, C.; Robert, M.; Saveant, J.-M.; Teillout, A.-L. Faraday Discuss. 2010, 148, 83.
  38. Song, N.; Gagliardi, C. J.; Binstead, R. A.; Zhang, M.-T.; Thorp, H.; Meyer, T. J. J. Am. Chem. Soc. 2012, 134, 18538. https://doi.org/10.1021/ja308700t
  39. Bae, J. H.; Kim, Y.-R.; Kim, R. S.; Chung, T. D. Phys. Chem. Chem. Phys. 2013, 15, 10645. https://doi.org/10.1039/c3cp50175b
  40. Moncelli, M. R.; Herrero, R.; Becucci, L.; Guidelli, R. Biochim. Biophys. Acta BBA - Bioenerg. 1998, 1364, 373. https://doi.org/10.1016/S0005-2728(98)00061-9
  41. Gamage, R. S. K. A.; McQuillan, A. J.; Peake, B. M. J. Chem. Soc. Faraday Trans. 1991, 87, 3653. https://doi.org/10.1039/ft9918703653
  42. Li, Q.; Batchelor-McAuley, C.; Lawrence, N. S.; Hartshorne, R. S.; Compton, R. G. Chem. Commun. 2011, 11426.
  43. Kim, Y.-R.; Kim, R. S.; Kang, S. K.; Choi, M. G.; Kim, H. Y.; Cho, D.; Lee, J. Y.; Chang, S.-K.; Chung, T. D. J. Am. Chem. Soc. 2013, 135, 18957. https://doi.org/10.1021/ja410406e
  44. Sato, A.; Takagi, K.; Kano, K.; Kato, N.; Duine, J.; Ikeda, T. Biochem. J. 2001, 357, 893. https://doi.org/10.1042/0264-6021:3570893
  45. Buchachenko, A. L. Pure Appl. Chem. 2000, 72, 2243.
  46. Roginsky, V.; Barsukova, T. J. Chem. Soc. Perkin Trans. 2 2000, 1575.
  47. Lebedev, A. V.; Ivanova, M. V.; Ruuge, E. K. Arch. Biochem. Biophys. 2003, 413, 191. https://doi.org/10.1016/S0003-9861(03)00111-5
  48. Lebedev, A. V.; Ivanova, M. V.; Timoshin, A. A.; Ruuge, E. K. ChemPhysChem 2007, 8, 1863. https://doi.org/10.1002/cphc.200700296
  49. O'Malley, P. J. J. Phys. Chem. A 1998, 102, 248. https://doi.org/10.1021/jp972467a
  50. Kaupp, M.; Remenyi, C.; Vaara, J.; Malkina, O. L.; Malkin, V. G. J. Am. Chem. Soc. 2002, 124, 2709. https://doi.org/10.1021/ja0162764
  51. Zhao, X.; Imahori, H.; Zhan, C.-G.; Sakata, Y.; Iwata, S.; Kitagawa, T. J. Phys. Chem. A 1997, 101, 622. https://doi.org/10.1021/jp962009m
  52. Ma, W.; Long, Y.-T. Chem. Soc. Rev. 2013, 43, 30.
  53. Darwish, N.; Eggers, P. K.; Ciampi, S.; Tong, Y.; Ye, S.; Paddon- Row, M. N.; Gooding, J. J. J. Am. Chem. Soc. 2012, 134, 18401. https://doi.org/10.1021/ja307665k
  54. Kwon, Y.; Mrksich, M. J. Am. Chem. Soc. 2002, 124, 806. https://doi.org/10.1021/ja010740n
  55. Kim, R. S.; Park, W.; Hong, H.; Chung, T. D.; Kim, S. Electrochem. Commun. 2014, 41, 39. https://doi.org/10.1016/j.elecom.2014.01.005
  56. Abhayawardhana, A. D.; Sutherland, T. C. J. Phys. Chem. C 2009, 113, 4915.
  57. Chung, T. D.; Anson, F. C. Anal. Chem. 2001, 73, 337. https://doi.org/10.1021/ac0009447
  58. Henstridge, M. C.; Wildgoose, G. G.; Compton, R. G. Langmuir 2010, 26, 1340. https://doi.org/10.1021/la902418v
  59. Bae, J. H.; Kim, Y.-R.; Kim, R. S.; Chung, T. D. Phys. Chem. Chem. Phys. 2013, 15, 10645. https://doi.org/10.1039/c3cp50175b
  60. Trammell, S. A.; Seferos, D. S.; Moore, M.; Lowy, D. A.; Bazan, G. C.; Kushmerick, J. G.; Lebedev, N. Langmuir 2007, 23, 942. https://doi.org/10.1021/la061555w
  61. Trammell, S. A.; Moore, M.; Schull, T. L.; Lebedev, N. J. Electroanal. Chem. 2009, 628, 125. https://doi.org/10.1016/j.jelechem.2009.01.023
  62. Hong, H.-G.; Park, W. Bull. Korean Chem. Soc. 2005, 26, 1885. https://doi.org/10.5012/bkcs.2005.26.11.1885
  63. Trammell, S. A.; Lowy, D. A.; Seferos, D. S.; Moore, M.; Bazan, G. C.; Lebedev, N. J. Electroanal. Chem. 2007, 606, 33. https://doi.org/10.1016/j.jelechem.2007.04.008
  64. Razzaq, H.; Qureshi, R.; Schiffrin, D. J. Electrochem. Commun. 2014, 39, 9. https://doi.org/10.1016/j.elecom.2013.12.002
  65. Petrangolini, P.; Alessandrini, A.; Berti, L.; Facci, P. J. Am. Chem. Soc. 2010, 132, 7445. https://doi.org/10.1021/ja101666q
  66. Petrangolini, P.; Alessandrini, A.; Navacchia, M. L.; Capobianco, M. L.; Facci, P. J. Phys. Chem. C 2011, 115, 19971. https://doi.org/10.1021/jp208343z
  67. Petrangolini, P.; Alessandrini, A.; Facci, P. J. Phys. Chem. C 2013, 117, 17451. https://doi.org/10.1021/jp405516z
  68. Darwish, N.; Diez-Perez, I.; Guo, S.; Tao, N.; Gooding, J. J.; Paddon-Row, M. N. J. Phys. Chem. C 2012, 116, 21093. https://doi.org/10.1021/jp3066458
  69. Tse, D. C.-S.; Kuwana, T. Anal. Chem. 1978, 50, 1315. https://doi.org/10.1021/ac50031a030
  70. Carlson, B. W.; Miller, L. L. J. Am. Chem. Soc. 1985, 107, 479. https://doi.org/10.1021/ja00288a035
  71. Murthy, A. S. N.; Sharma, J. Talanta 1998, 45, 951. https://doi.org/10.1016/S0039-9140(97)00201-4
  72. Katz, E.; Lotzbeyer, T.; Schlereth, D. D.; Schuhmann, W.; Schmidt, H.-L. J. Electroanal. Chem. 1994, 73, 189.
  73. Zhang, J.; Seo, K.; Jeon, I. C. Anal. Bioanal. Chem. 2003, 375, 539.
  74. Umezawa, N.; Tsurunari, M.; Kondo, T. Chem. Lett. 2009, 38, 766. https://doi.org/10.1246/cl.2009.766
  75. Willner, I.; Riklin, A. Anal. Chem. 1994, 66, 1535. https://doi.org/10.1021/ac00081a028
  76. Bardea, A.; Katz, E.; Buckmann, A. F.; Willner, I. J. Am. Chem. Soc. 1997, 119, 9114. https://doi.org/10.1021/ja971192+
  77. Willner, I.; Katz, E. Angew. Chem. Int. Ed. 2000, 39, 1180. https://doi.org/10.1002/(SICI)1521-3773(20000403)39:7<1180::AID-ANIE1180>3.0.CO;2-E
  78. Piro, B.; Reisberg, S.; Anquetin, G.; Duc, H.-T.; Pham, M.-C. Biosensors 2013, 3, 58. https://doi.org/10.3390/bios3010058
  79. March, G.; Noel, V.; Piro, B.; Reisberg, S.; Pham, M.-C. J. Am. Chem. Soc. 2008, 130, 15752. https://doi.org/10.1021/ja8047255
  80. March, G.; Reisberg, S.; Piro, B.; Pham, M.-C.; Delamar, M.; Noel, V.; Odenthal, K.; Hibbert, D. B.; Gooding, J. J. J. Electroanal. Chem. 2008, 622, 37. https://doi.org/10.1016/j.jelechem.2008.04.030
  81. He, X.-P.; Wang, X.-W.; Jin, X.-P.; Zhou, H.; Shi, X.-X.; Chen, G.- R.; Long, Y.-T. J. Am. Chem. Soc. 2011, 133, 3649. https://doi.org/10.1021/ja110478j
  82. Yeo, W.-S.; Mrksich, M. Angew. Chem. Int. Ed. 2003, 42, 3121. https://doi.org/10.1002/anie.200250862
  83. Akanda, M. R.; Tamilavan, V.; Park, S.; Jo, K.; Hyun, M. H.; Yang, H. Anal. Chem. 2013, 85, 1631. https://doi.org/10.1021/ac3028855
  84. Yehezkeli, O.; Tel-Vered, R.; Wasserman, J.; Trifonov, A.; Michaeli, D.; Nechushtai, R.; Willner, I. Nat. Commun. 2012, 3, 742. https://doi.org/10.1038/ncomms1741
  85. Aulenta, F.; Ferri, T.; Nicastro, D.; Majone, M.; Papini, M. P. New Biotechnol. 2011, 29, 126. https://doi.org/10.1016/j.nbt.2011.04.001
  86. Adachi, M.; Shimomura, T.; Komatsu, M.; Yakuwa, H.; Miya, A. Chem. Commun. 2008, 2055.
  87. Feng, C.; Ma, L.; Li, F.; Mai, H.; Lang, X.; Fan, S. Biosens. Bioelectron. 2010, 25, 1516. https://doi.org/10.1016/j.bios.2009.10.009
  88. Ahmed, J.; Kim, S. Bull. Korean Chem. Soc. 2013, 34, 3649. https://doi.org/10.5012/bkcs.2013.34.12.3649
  89. Kim, E.; Leverage, W. T.; Liu, Y.; White, I. M.; Bentley, W. E.; Payne, G. F. Analyst 2013, 139, 32.
  90. Song, Z.; Zhou, H. Energy Environ. Sci. 2013, 6, 2280. https://doi.org/10.1039/c3ee40709h
  91. Alt, H.; Binder, H.; Kohling, A.; Sandstede, G. Electrochimica Acta 1972, 17, 873. https://doi.org/10.1016/0013-4686(72)90010-2
  92. Foos, J. S.; Erker, S. M.; Rembetsy, L. M. J. Electrochem. Soc. 1986, 133, 836. https://doi.org/10.1149/1.2108689
  93. Le Gall, T.; Reiman, K. H.; Grossel, M. C.; Owen, J. R. J. Power Sources 2003, 119-121, 316. https://doi.org/10.1016/S0378-7753(03)00167-8
  94. Choi, W.; Harada, D.; Oyaizu, K.; Nishide, H. J. Am. Chem. Soc. 2011, 133, 19839. https://doi.org/10.1021/ja206961t
  95. Suematsu, S.; Naoi, K. J. Power Sources 2001, 97-98, 816. https://doi.org/10.1016/S0378-7753(01)00735-2
  96. Roldan, S.; Blanco, C.; Granda, M.; Menendez, R.; Santamaria, R. Angew. Chem. - Int. Ed. 2011, 50, 1699. https://doi.org/10.1002/anie.201006811
  97. Yu, H.; Wu, J.; Fan, L.; Lin, Y.; Xu, K.; Tang, Z.; Cheng, C.; Tang, S.; Lin, J.; Huang, M. et al. J. Power Sources 2012, 198, 402. https://doi.org/10.1016/j.jpowsour.2011.09.110
  98. Roldan, S.; Granda, M.; Menendez, R.; Santamaria, R.; Blanco, C. J. Phys. Chem. C 2011, 115, 17606. https://doi.org/10.1021/jp205100v
  99. Huskinson, B.; Marshak, M. P.; Suh, C.; Er, S.; Gerhardt, M. R.; Galvin, C. J.; Chen, X.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J. Nature 2014, 505, 195. https://doi.org/10.1038/nature12909
  100. Rausch, B.; Symes, M. D.; Cronin, L. J. Am. Chem. Soc. 2013, 135, 13656. https://doi.org/10.1021/ja4071893
  101. Pichot, F.; Gregg, B. A. J. Phys. Chem. B 2000, 104, 6.
  102. Cheng, M.; Yang, X.; Zhang, F.; Zhao, J.; Sun, L. Angew. Chem. Int. Ed. 2012, 51, 9896. https://doi.org/10.1002/anie.201205529

Cited by

  1. Discovery of low energy pathways to metal-mediated BN bond reduction guided by computation and experiment vol.6, pp.12, 2015, https://doi.org/10.1039/C5SC02348C
  2. Preparation of Thin Melanin-Type Films by Surface-Controlled Oxidation vol.32, pp.16, 2016, https://doi.org/10.1021/acs.langmuir.6b00402
  3. Quantitative Aspects of the Interfacial Catalytic Oxidation of Dithiothreitol by Dissolved Oxygen in the Presence of Carbon Nanoparticles vol.50, pp.2, 2016, https://doi.org/10.1021/acs.est.5b04958
  4. Experimental and Theoretical Reduction Potentials of Some Biologically Active ortho-Carbonyl para-Quinones vol.22, pp.4, 2017, https://doi.org/10.3390/molecules22040577
  5. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries vol.29, pp.48, 2017, https://doi.org/10.1002/adma.201607007
  6. Template Synthesis of 2D Carbon Nanosheets: Improving Energy Density of Supercapacitors by Dual Redox Additives Anthraquinone-2-sulfonic Acid Sodium and KI vol.5, pp.7, 2017, https://doi.org/10.1021/acssuschemeng.7b00759
  7. Electroreduction mechanism of N-phenylhydroxylamines in aprotic solvents: formation of hydrogen bonds between N-(3-nitrophenyl)hydroxylamine and its radical anion vol.66, pp.3, 2017, https://doi.org/10.1007/s11172-017-1758-z
  8. A High Power Buckypaper Biofuel Cell: Exploiting 1,10-Phenanthroline-5,6-dione with FAD-Dependent Dehydrogenase for Catalytically-Powerful Glucose Oxidation vol.7, pp.7, 2017, https://doi.org/10.1021/acscatal.7b00738
  9. Immunosensor Employing Stable, Solid 1-Amino-2-naphthyl Phosphate and Ammonia-Borane toward Ultrasensitive and Simple Point-of-Care Testing vol.2, pp.8, 2014, https://doi.org/10.1021/acssensors.7b00407
  10. Quest for Organic Active Materials for Redox Flow Batteries: 2,3-Diaza-anthraquinones and Their Electrochemical Properties vol.30, pp.3, 2014, https://doi.org/10.1021/acs.chemmater.7b04220
  11. Extended Operational Lifetime of a Photosystem-Based Bioelectrode vol.141, pp.13, 2014, https://doi.org/10.1021/jacs.8b13869
  12. Which Parameter is Governing for Aqueous Redox Flow Batteries with Organic Active Material? vol.91, pp.6, 2014, https://doi.org/10.1002/cite.201800162
  13. A disposable acetylcholine esterase sensor for As(III) determination in groundwater matrix based on 4-acetoxyphenol hydrolysis vol.11, pp.40, 2014, https://doi.org/10.1039/c9ay01199d
  14. Deactivation of Co-Schiff base catalysts in the oxidation of para-substituted lignin models for the production of benzoquinones vol.10, pp.2, 2014, https://doi.org/10.1039/c9cy02040c
  15. Rutin as an Electrochemical Mediator in the Determination of Captopril using a Graphite Paste Electrode vol.32, pp.2, 2014, https://doi.org/10.1002/elan.201900145
  16. Anion Radical of Carbonyl Compounds as Electrochemically Generated Base in Henry Reactions: 1,2-Acenaphthenedione vol.167, pp.15, 2020, https://doi.org/10.1149/1945-7111/ab9eb3