DOI QR코드

DOI QR Code

Oxidation of Isopropyl Alcohol in Air by a Catalytic Plasma Reactor System

촉매-플라즈마 반응 시스템을 이용한 아이소프로필 알코올 산화

  • Jo, Jin Oh (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Mok, Young Sun (Department of Chemical and Biological Engineering, Jeju National University)
  • 조진오 (제주대학교 생명화학공학과) ;
  • 목영선 (제주대학교 생명화학공학과)
  • Received : 2014.07.23
  • Accepted : 2014.07.30
  • Published : 2014.10.10

Abstract

A catalytic plasma reactor was employed for the oxidation of isopropyl alcohol (IPA) classified as a volatile organic compound (VOC). Copper oxide (Cu : 0.5% (w/w)) supported on a multichannel porous ceramic consisting of ${\alpha}-Al_2O_3$ was used as a catalyst, which was directly exposed to the plasma created in it. The effects of discharge voltage and reaction temperature on the concentrations of IPA and its byproducts were examined to understand the behavior of the catalytic plasma reactor. Without thermal insulation, the reactor temperature increased up to $120^{\circ}C$ at an applied voltage of 17 kV (discharge power : 28 W), and the IPA at a flow rate of $1L\;min^{-1}$ ($O_2$ : 10% (v/v); IPA : 1000 ppm) was completely removed. At temperatures below $120^{\circ}C$, however, besides the desirable product $CO_2$, several unwanted byproducts such as acetone, formaldehyde and CO were also formed from IPA. On the other hand, when the reactor was thermally insulated, the plasma discharge increased the temperature up to $265^{\circ}C$ under the same condition and most of IPA was oxidized to $CO_2$. Without loading CuO on the ceramic support, the plasma discharge in the thermally insulated reactor produced nearly equal amounts of $CO_2$ and CO. On comparison, with the catalyst alone (temperature : $265^{\circ}C$), more than 70% of the removed IPA was simply converted into another type of VOC (acetone), indicating that the catalyst assisted by the plasma is more effective in the oxidation of IPA than that of the catalyst-alone process.

본 연구에서는 휘발성유기화합물의 일종인 아이소프로필 알코올(IPA) 산화에 촉매-플라즈마 반응 시스템을 이용하였다. ${\alpha}-Al_2O_3$로 이루어진 다공성 세라믹에 산화구리를 0.5% (w/w) 담지하여 촉매로 사용하였으며, 촉매상에 직접 플라즈마를 생성시켜 표면이 바로 플라즈마에 노출되도록 하였다. 촉매-플라즈마 공정의 특성을 파악하기 위하여 방전전압 및 온도 변화에 따른 IPA 및 분해부산물의 농도를 측정하였다. 촉매-플라즈마 반응기를 단열시키지 않았을 경우, 전압 17 kV (방전전력 : 28 W)에서 반응기 온도가 $120^{\circ}C$까지 증가하였으며, 유량 $1L\;min^{-1}$ (산소 : 10% (v/v); IPA : 1000 ppm) 조건에서 IPA가 모두 제거되었다. 그러나 $120^{\circ}C$ 이하의 온도에서는 바람직한 생성물인 이산화탄소 이외에도 아세톤, 포름알데하이드, 일산화탄소와 같은 유해 분해 부산물이 생성되었다. 반면 촉매-플라즈마 반응기 외부를 단열했을 때는 같은 조건에서 반응기 내부 온도가 $265^{\circ}C$까지 증가하였으며, IPA가 대부분 이산화탄소로 산화되었다. 다공성 세라믹에 산화구리를 담지하지 않았을 때는 촉매-플라즈마 반응기를 단열해도 이산화탄소와 일산화탄소가 유사한 비율로 생성되었다. 한편, 플라즈마를 생성시키지 않고 촉매만 단독으로 사용했을 때는(반응온도 : $265^{\circ}C$), 분해된 IPA의 70% 이상이 또 다른 휘발성유기화합물인 아세톤으로 전환되었으며, 이를 통해 촉매 단독공정보다 촉매-플라즈마 복합 공정이 IPA 산화에 더 효과적임을 알 수 있었다.

Keywords

References

  1. Y. Yang, X. Xu, and K. Sun, Catalytic combustion of ethyl acetate on supported copper oxide catalysts, J. Hazard. Mater., B139, 140-145 (2007).
  2. J. Jarrige and P. Vervisch, Decomposition of three volatile organic compounds by nanosecond pulsed corona discharge: Study of by-product formation and influence of high voltage pulse parameters, J. Appl. Phys., 99, 113-303 (2006).
  3. C. H. Wang, $Al_2O_3$-supported transition-metal oxide catalysts for catalytic incineration of toluene, Chemosphere, 55, 11-17 (2004). https://doi.org/10.1016/j.chemosphere.2003.10.036
  4. Y. S. Mok and I. S. Nam, Role of organic chemical additives in pulsed corona discharge process for conversion of NO, J. Chem. Eng. Japan, 31, 391-397 (1998). https://doi.org/10.1252/jcej.31.391
  5. S. Delagrange, L. Pinard, and J. M. Tatibout, Combination of a non-thermal plasma and a catalyst for toluene removal from air: Manganese based oxide catalysts, Appl. Catal. B: Environ., 68, 92-98 (2006). https://doi.org/10.1016/j.apcatb.2006.07.002
  6. J. Karuppiah, L. Sivachandiran, R. Karvembu, and Ch. Subrahmanyam, Catalytic nonthermal plasma reactor for the abatement of low concentrations of isopropanol, Chem. Eng. J., 165, 194-199 (2010). https://doi.org/10.1016/j.cej.2010.09.017
  7. L. Sivachandiran, F. Thevenet, P. Gravejat, and A. Rousseau, Isopropanol saturated $TiO_2$ surface regeneration by non-thermal plasma: Influence of air relative humidity, Chem. Eng. J., 214, 17-26 (2013). https://doi.org/10.1016/j.cej.2012.10.022
  8. J. Medina-Valtierra, C. Frausto-Reyes, G. Camarillo-Martinez, and J. A. Ramiirez-Ortiz, Complete oxidation of isopropanol over $Cu_4O_3$ (paramelaconite) coating deposited on fiberglass by CVD, Appl. Catal., A: General, 356, 36-42 (2009). https://doi.org/10.1016/j.apcata.2008.12.014
  9. Y. S. Mok and I. S. Nam, Removal of nitric oxide in a pulsed corona discharge reactor, Chem. Eng. Technol., 22, 527-532 (1999). https://doi.org/10.1002/(SICI)1521-4125(199906)22:6<527::AID-CEAT527>3.0.CO;2-5
  10. W. M. Hou and Y. Ku, Photocatalytic decomposition of gaseous isopropanol in a tubular optical fiber reactor under periodic UV-LED illumination, J. Mol. Catal. A: Chem., 374-375, 7-11 (2013). https://doi.org/10.1016/j.molcata.2013.03.016
  11. J. Jarrige and P. Vervisch, Plasma-enhanced catalysis of propane and isopropyl alcohol at ambient temperature on a $MnO_2$-based catalyst, Appl. Catal. B: Environ., 90, 74-82 (2009). https://doi.org/10.1016/j.apcatb.2009.02.015
  12. V. Demidiouk and J. O. Chae, Decomposition of Volatile Organic Compounds in Plasma-Catalytic System, IEEE Trans. Plasma Sci., 33, 157-161 (2005). https://doi.org/10.1109/TPS.2004.841621
  13. S. M. Saqer, D. I. Kondarides, and X. E. Verykios, Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on ${\gamma}-Al_2O_3$, Appl. Catal. B: Environ., 103, 275-286 (2011). https://doi.org/10.1016/j.apcatb.2011.01.001
  14. X. Zheng, S. Wang, S. Wang, S. Zhang, W. Huang, and S. Wu, Copper oxide catalysts supported on ceria for low-temperature CO oxidation, Catal. Commun., 5, 729-732 (2004). https://doi.org/10.1016/j.catcom.2004.09.008
  15. H. L. Tidahy, S. Siffert, F. Wyrwalski, J. -F. Lamonier, and A. Aboukais, Catalytic activity of copper and palladium based catalysts for toluene total oxidation, Catal. Today, 119, 317-320 (2007). https://doi.org/10.1016/j.cattod.2006.08.023
  16. C. H. Wang, S. S. Lin, C. L. Chen, and H. S. Weng, Performance of the supported copper oxide catalysts for the catalytic incineration of aromatic hydrocarbons, Chemosphere, 64, 503-509 (2006). https://doi.org/10.1016/j.chemosphere.2005.11.023
  17. U. Roland, F. Holzer, and F. D. Kopinke, Improved oxidation of air pollutants in a non-thermal plasma, Catal. Today, 73, 315-323 (2002). https://doi.org/10.1016/S0920-5861(02)00015-9
  18. C. Ayrault, J. Barrault, N. Blin-Simiand, F. Jorand, S. Pasquiers, A. Rousseau, and J. M. Tatibouet, Oxidation of 2-heptanone in air by a DBD-type plasma generated within a honeycomb monolith supported Pt-based catalyst, Catal. Today, 89, 75-81 (2004). https://doi.org/10.1016/j.cattod.2003.11.042
  19. H. Q. Trinh and Y. S. Mok, Plasma-catalytic oxidation of acetone in annular porous monolithic ceramic-supported catalysts, Chem. Eng. J., 251, 199-206 (2014) https://doi.org/10.1016/j.cej.2014.04.071
  20. J. O. Jo, S. B. Lee, D. L. Jang, and Y. S. Mok, Plasma-catalytic ceramic membrane reactor for volatile organic compound control, IEEE Trans. Plasma Sci., 41, 3021-3029 (2013). https://doi.org/10.1109/TPS.2013.2279551
  21. K. Takaki, J.-S. Chang, and K. G. Kostov, Atmospheric pressure of nitrogen plasmas in a ferro-electric packed bed barrier discharge reactor part I: modeling, IEEE Trans. Dielectr. Electr. Insul., 11, 481-490 (2004).

Cited by

  1. Characteristics of Biological Treatment of Isopropyl Alcohol Wastewater vol.36, pp.9, 2014, https://doi.org/10.1089/ees.2018.0389