DOI QR코드

DOI QR Code

Conversion of CO2 and CH4 through Hybrid Reactor Composed of Plasma and Catalyst at Atmospheric Pressure

상압 플라즈마-촉매 하이브리드 반응기를 통한 CO2와 CH4의 전환처리

  • Kim, Tae Kyung (Department of Chemical Engineering, Kangwon National University) ;
  • Nguyen, Duc Ba (Department of Chemical Engineering, Kangwon National University) ;
  • Lee, Won Gyu (Department of Chemical Engineering, Kangwon National University)
  • Received : 2014.07.09
  • Accepted : 2014.08.01
  • Published : 2014.10.10

Abstract

The conversion reaction of methane and carbon dioxide at an atmospheric pressure plasma reactor filled with Ni-$Al_2O_3$ and Ni-$MgAl_2O_4$ catalyst was performed. Effects of various process parameters such as the applied electric power, reaction gas flow rate, reactor temperature, mixing ratio of reactants and the presence of the catalyst on the reaction between methane and carbon dioxide were analyzed. From the analysis of the contribution of the catalyst in the reaction step, even if the temperature raised to $400^{\circ}C$, there was no spontaneous catalytic conversion of methane and carbon dioxide without plasma discharges. When the catalysts for the conversion of methane and carbon dioxide would be adopted to the plasma reactor, the careful selection of suitable catalysts and process parameters should be essential.

상압 플라즈마 반응기 내에 Ni-$Al_2O_3$와 Ni-$MgAl_2O_4$ 촉매를 충진한 하이브리드 반응기를 이용하여 메탄과 이산화탄소의 전환반응을 진행하였다. 인가전력, 반응가스 유량, 혼합비율 및 반응기 온도 등 다양한 공정변수와 촉매의 충진 유무에 따른 메탄과 이산화탄소의 전환반응 특성이 분석되었다. 촉매의 반응 기여도 분석에서 공정온도를 $400^{\circ}C$까지 올린 경우에도 플라즈마 방전이 없이는 메탄과 이산화탄소의 촉매를 통한 자발적 전환반응이 일어나지 않았다. 이는 촉매를 충진하지 않은 플라즈마 방전만의 전환공정과의 비교를 통하여 확인할 수 있었다. 플라즈마 반응기에 촉매를 적용하는 경우에는 공정의 적절성과 전환처리에 적합한 촉매의 선택이 필수적이다.

Keywords

References

  1. H. Hokazono and H. Fujimoto, Theoretical analysis of the $CO_2$ molecule decomposition and contaminants yield in transversely excited atmospheric $CO_2$ laser discharge, J. Appl. Phys., 62, 1585-1594 (1987). https://doi.org/10.1063/1.339606
  2. M. W. Li, G. H. Xu, Y. L. Tian, L. Chen, and H. F. Fu, Carbon dioxide reforming of methane using DC corona discharge plasma reaction, J. Phys. Chem. A, 108, 1687-1693 (2004). https://doi.org/10.1021/jp037008q
  3. Y. P. Zhang, Y. Li, Y. Wang, C. J. Liu, and B. Eliasson, Plasma methane conversion in the presence of carbon dioxide using dielectric-barrier discharges, Fuel Process. Technol., 83, 101-109 (2003). https://doi.org/10.1016/S0378-3820(03)00061-4
  4. S. L. Yao, M. Okumoto, A. Nakayama, and E. Suzuki, Plasma reforming and coupling of methane with carbon dioxide, Energy Fuels, 15, 1295-1299 (2001). https://doi.org/10.1021/ef010089+
  5. U. Roland, F. Holzer, and F. D. Kopinke, Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 2. Ozone decomposition and deactivation of ${\gamma}-Al_2O_3$, Appl. Catal. B: Environ., 58, 217-226 (2005). https://doi.org/10.1016/j.apcatb.2004.11.024
  6. T. K. Kim and W. G. Lee, Conversion characteristics of $CH_4$ and $CO_2$ in an atmospheric pressure plasma reactor, Appl. Chem. Eng., 22, 653-657 (2011).
  7. T. Jiang, Y. Li, C. J. Liu, G. H. Xu, B. Eliasson, and B. Xue, Plasma methane conversion using dielectric-barrier discharges with zeolite A, Catal. Today, 72, 229-235 (2002). https://doi.org/10.1016/S0920-5861(01)00497-7
  8. X. Tao, F. Qi, Y. Yin, and X. Dai, $CO_2$ reforming of $CH_4$ by combination of thermal plasma and catalyst, Int. J. Hydrogen Energy, 33, 1262-1265 (2008). https://doi.org/10.1016/j.ijhydene.2007.12.057
  9. X. Tao, M. Bai, Q. Wu, Z. Huang, Y. Yin, and X. Dai, $CO_2$ reforming of $CH_4$ by binode thermal plasma, Int. J. Hydrogen Energy, 34, 9373-9378 (2009). https://doi.org/10.1016/j.ijhydene.2009.09.048
  10. H. Le, L. L. Lobban, and R. G. Mallinson, Some temperature effects on stability and carbon formation in low temperature ac plasma conversion of methane, Catal. Today, 89, 15-20 (2004). https://doi.org/10.1016/j.cattod.2003.11.038
  11. D. Li, X. Li, M. Bai, X. Tao, S. Shang, X. Dai, and Y. Yin, $CO_2$ reforming of $CH_4$ by atmospheric pressure glow discharge plasma: A high conversion ability, Int. J. Hydrogen Energy, 34, 308-313 (2009).
  12. A. Indarto, J. W. Choi, H. Lee, and H. K. Song, Effect of additive gases on methane conversion using gliding arc discharge, Energy, 31, 2986-2995 (2006). https://doi.org/10.1016/j.energy.2005.10.034
  13. Y. Li, G. H. Xu, C. J. Liu, B. Eliasson, and B. Z. Xue, Co-generation of syngas and higher hydrocarbons from $CO_2$ and $CH_4$ using dielectric-barrier discharge: Effect of electrode materials, Energy Fuels, 15, 299-302 (2001). https://doi.org/10.1021/ef0002445
  14. H. K. Song, H. Lee, J. W. Choi, and B. K. Na, Effect of electrical pulse forms on the $CO_2$ reforming of methane using atmospheric dielectric barrier discharge, Plasma Chem. Plasma Process., 24, 57-72 (2004). https://doi.org/10.1023/B:PCPP.0000004882.33117.42
  15. T. K. Kim and W. G. Lee, Reaction between methane and carbon dioxide to produce syngas in dielectric barrier discharge system, J. Ind. Eng. Chem., 18, 1710-1714 (2012). https://doi.org/10.1016/j.jiec.2012.03.009
  16. R. Martinez, E. Romero, C. Guimon, and R. Bilbao, $CO_2$ reforming of methane over coprecipitated Ni-Al catalysts modified with lanthanum, Appl. Catal. A: Gen., 274, 139-149 (2004). https://doi.org/10.1016/j.apcata.2004.06.017
  17. F. Pompeo, N. Nichio, O. Ferretti, and D. Resasco, Study of Ni catalysts on different supports to obtain synthesis gas, Int. J. Hydrogen Energy, 30, 1399-1405 (2005). https://doi.org/10.1016/j.ijhydene.2004.10.004
  18. S. H. Jung, S. M. Park, S. H. Park, and S. D. Kim, Surface modification of fine powders by atmospheric pressure plasma in a circulating fluidized bed reactor, Ind. Eng. Chem. Res., 43, 5483-5488 (2004). https://doi.org/10.1021/ie034216w
  19. M. Kraus, B. Eliasson, U. Kogelschatz, and A. Wokaun, $CO_2$ reforming of methane by the combination of dielectric-barrier discharges and catalysis, Phys. Chem. Chem. Phys., 3, 294-300 (2001). https://doi.org/10.1039/b007015g
  20. H. L. Chen, H. M. Lee, S. H. Chen, and M. B. Chang, Review of packed-bed plasma reactor for ozone generation and air pollution control, Ind. Eng. Chem. Res., 47, 2122-2130 (2008). https://doi.org/10.1021/ie071411s
  21. S. Futamura, H. Kabashima, and H. Einaga, Steam reforming of aliphatic hydrocarbons with nonthermal plasma, IEEE Trans. Ind. Appl., 40, 1476-1481 (2004). https://doi.org/10.1109/TIA.2004.836307
  22. D. B. Nguyen and W. G. Lee, Effect of ambient condition for coaxial dielectric barrier discharge reactor on $CO_2$ reforming of $CH_4$ to syngas, J. Ind. Eng. Chem., 20, 972-978 (2014). https://doi.org/10.1016/j.jiec.2013.06.031
  23. K. Zhang, B. Eliasson, and U. Kogelschatz, Direct conversion of greenhouse gases to synthesis gas and $C_4$ hydrocarbons over zeolite HY promoted by a dielectric-barrier discharge, Ind. Eng. Chem. Res., 41, 1462-1468 (2002). https://doi.org/10.1021/ie0105021
  24. R. Marques, S. D. Costa, and P. D. Costa, Plasma-assisted catalytic oxidation of methane: On the influence of plasma energy deposition and feed composition, Appl. Catal. B: Environ., 82, 50-57 (2008). https://doi.org/10.1016/j.apcatb.2007.12.024