References
-
H. Hokazono and H. Fujimoto, Theoretical analysis of the
$CO_2$ molecule decomposition and contaminants yield in transversely excited atmospheric$CO_2$ laser discharge, J. Appl. Phys., 62, 1585-1594 (1987). https://doi.org/10.1063/1.339606 - M. W. Li, G. H. Xu, Y. L. Tian, L. Chen, and H. F. Fu, Carbon dioxide reforming of methane using DC corona discharge plasma reaction, J. Phys. Chem. A, 108, 1687-1693 (2004). https://doi.org/10.1021/jp037008q
- Y. P. Zhang, Y. Li, Y. Wang, C. J. Liu, and B. Eliasson, Plasma methane conversion in the presence of carbon dioxide using dielectric-barrier discharges, Fuel Process. Technol., 83, 101-109 (2003). https://doi.org/10.1016/S0378-3820(03)00061-4
- S. L. Yao, M. Okumoto, A. Nakayama, and E. Suzuki, Plasma reforming and coupling of methane with carbon dioxide, Energy Fuels, 15, 1295-1299 (2001). https://doi.org/10.1021/ef010089+
-
U. Roland, F. Holzer, and F. D. Kopinke, Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 2. Ozone decomposition and deactivation of
${\gamma}-Al_2O_3$ , Appl. Catal. B: Environ., 58, 217-226 (2005). https://doi.org/10.1016/j.apcatb.2004.11.024 -
T. K. Kim and W. G. Lee, Conversion characteristics of
$CH_4$ and$CO_2$ in an atmospheric pressure plasma reactor, Appl. Chem. Eng., 22, 653-657 (2011). - T. Jiang, Y. Li, C. J. Liu, G. H. Xu, B. Eliasson, and B. Xue, Plasma methane conversion using dielectric-barrier discharges with zeolite A, Catal. Today, 72, 229-235 (2002). https://doi.org/10.1016/S0920-5861(01)00497-7
-
X. Tao, F. Qi, Y. Yin, and X. Dai,
$CO_2$ reforming of$CH_4$ by combination of thermal plasma and catalyst, Int. J. Hydrogen Energy, 33, 1262-1265 (2008). https://doi.org/10.1016/j.ijhydene.2007.12.057 -
X. Tao, M. Bai, Q. Wu, Z. Huang, Y. Yin, and X. Dai,
$CO_2$ reforming of$CH_4$ by binode thermal plasma, Int. J. Hydrogen Energy, 34, 9373-9378 (2009). https://doi.org/10.1016/j.ijhydene.2009.09.048 - H. Le, L. L. Lobban, and R. G. Mallinson, Some temperature effects on stability and carbon formation in low temperature ac plasma conversion of methane, Catal. Today, 89, 15-20 (2004). https://doi.org/10.1016/j.cattod.2003.11.038
-
D. Li, X. Li, M. Bai, X. Tao, S. Shang, X. Dai, and Y. Yin,
$CO_2$ reforming of$CH_4$ by atmospheric pressure glow discharge plasma: A high conversion ability, Int. J. Hydrogen Energy, 34, 308-313 (2009). - A. Indarto, J. W. Choi, H. Lee, and H. K. Song, Effect of additive gases on methane conversion using gliding arc discharge, Energy, 31, 2986-2995 (2006). https://doi.org/10.1016/j.energy.2005.10.034
-
Y. Li, G. H. Xu, C. J. Liu, B. Eliasson, and B. Z. Xue, Co-generation of syngas and higher hydrocarbons from
$CO_2$ and$CH_4$ using dielectric-barrier discharge: Effect of electrode materials, Energy Fuels, 15, 299-302 (2001). https://doi.org/10.1021/ef0002445 -
H. K. Song, H. Lee, J. W. Choi, and B. K. Na, Effect of electrical pulse forms on the
$CO_2$ reforming of methane using atmospheric dielectric barrier discharge, Plasma Chem. Plasma Process., 24, 57-72 (2004). https://doi.org/10.1023/B:PCPP.0000004882.33117.42 - T. K. Kim and W. G. Lee, Reaction between methane and carbon dioxide to produce syngas in dielectric barrier discharge system, J. Ind. Eng. Chem., 18, 1710-1714 (2012). https://doi.org/10.1016/j.jiec.2012.03.009
-
R. Martinez, E. Romero, C. Guimon, and R. Bilbao,
$CO_2$ reforming of methane over coprecipitated Ni-Al catalysts modified with lanthanum, Appl. Catal. A: Gen., 274, 139-149 (2004). https://doi.org/10.1016/j.apcata.2004.06.017 - F. Pompeo, N. Nichio, O. Ferretti, and D. Resasco, Study of Ni catalysts on different supports to obtain synthesis gas, Int. J. Hydrogen Energy, 30, 1399-1405 (2005). https://doi.org/10.1016/j.ijhydene.2004.10.004
- S. H. Jung, S. M. Park, S. H. Park, and S. D. Kim, Surface modification of fine powders by atmospheric pressure plasma in a circulating fluidized bed reactor, Ind. Eng. Chem. Res., 43, 5483-5488 (2004). https://doi.org/10.1021/ie034216w
-
M. Kraus, B. Eliasson, U. Kogelschatz, and A. Wokaun,
$CO_2$ reforming of methane by the combination of dielectric-barrier discharges and catalysis, Phys. Chem. Chem. Phys., 3, 294-300 (2001). https://doi.org/10.1039/b007015g - H. L. Chen, H. M. Lee, S. H. Chen, and M. B. Chang, Review of packed-bed plasma reactor for ozone generation and air pollution control, Ind. Eng. Chem. Res., 47, 2122-2130 (2008). https://doi.org/10.1021/ie071411s
- S. Futamura, H. Kabashima, and H. Einaga, Steam reforming of aliphatic hydrocarbons with nonthermal plasma, IEEE Trans. Ind. Appl., 40, 1476-1481 (2004). https://doi.org/10.1109/TIA.2004.836307
-
D. B. Nguyen and W. G. Lee, Effect of ambient condition for coaxial dielectric barrier discharge reactor on
$CO_2$ reforming of$CH_4$ to syngas, J. Ind. Eng. Chem., 20, 972-978 (2014). https://doi.org/10.1016/j.jiec.2013.06.031 -
K. Zhang, B. Eliasson, and U. Kogelschatz, Direct conversion of greenhouse gases to synthesis gas and
$C_4$ hydrocarbons over zeolite HY promoted by a dielectric-barrier discharge, Ind. Eng. Chem. Res., 41, 1462-1468 (2002). https://doi.org/10.1021/ie0105021 - R. Marques, S. D. Costa, and P. D. Costa, Plasma-assisted catalytic oxidation of methane: On the influence of plasma energy deposition and feed composition, Appl. Catal. B: Environ., 82, 50-57 (2008). https://doi.org/10.1016/j.apcatb.2007.12.024