DOI QR코드

DOI QR Code

Probabilistic Method to Enhance ZigBee Throughput in Wi-Fi Interference Environment

Wi-Fi 간섭 환경에서 ZigBee 전송률 향상을 위한 확률적 방법

  • Lee, Sujin (Pusan National University Department of Computer Engineering) ;
  • Yoo, Younghwan (Pusan National University Department of Computer Engineering)
  • Received : 2014.08.18
  • Accepted : 2014.09.11
  • Published : 2014.09.30

Abstract

The Internet of Things (IoT), which has recently attracted attention as next-generation IT industry, is based on a wired and wireless network platform that can connect various Things. However, it is challenging to implement the IoT platform because of the heterogeneity of the network. Particularly, the ZigBee transmission may be significantly harmed due to Wi-Fi with the relatively much higher power, and this is one of the reason making the platform implementation difficult. In this paper, the ZigBee transmission is measured and analyzed by the BEB algorithm for finding the slot time when ZigBee can transmit, and an actual transmission happens stochastically depending on the network environment. The simulation results show that it guarantees high success rate of the ZigBee transmission by overcoming Wi-Fi interference in the 2.4 GHz frequency band.

차세대 IT 산업으로 주목 받는 사물인터넷(Internet of Things)은 다양한 사물(Things)들을 서로 연결시킬 수 있는 유무선 네트워크 플랫폼을 기반으로 한다. 그러나 이기종 네트워크(Heterogeneous Network)의 특성으로 인해 사물인터넷 플랫폼 개발에 있어 많은 어려움이 있다. 무엇보다도 ZigBee보다 큰 전송 파워를 사용하는 Wi-Fi 때문에 ZigBee 전송은 오류가 발생할 확률이 높아지고 이는 사물인터넷 구현을 힘들게 하는 요소로 작용하게 된다. 본 논문의 제안방법에서는 ZigBee 노드가 충돌 없이 전송 가능한 시간을 분석하고 네트워크 환경에 따라 확률적으로 전송여부를 결정하도록 한다. 이를 통해 같은 주파수 대역을 사용하는 Wi-Fi와 ZigBee의 네트워크 간 간섭현상을 극복하고 높은 ZigBee 프레임 전송 성공률을 달성할 수 있음을 실험으로 확인하였다.

Keywords

References

  1. Y. Kim, Y. Jeon, and I. Chong, "Device objectification and orchestration mechanism for IoT, " J. KICS, vol. 38C, no. 01, pp. 19-32, Jan. 2013. https://doi.org/10.7840/kics.2013.38C.1.19
  2. J. Kim and J. Lee, "A study on the service platform for Internet of Things, " in Proc. KICS ICC 2012, pp. 260-261, Jan. 2012.
  3. A. Sikora, "Compatibility of IEEE 802.15.4 (ZigBee) with IEEE 802.11 (WLAN), bluetooth, and microwave ovens in 2.4GHz ISM-Band, " Steinbeis-Transfer Center, Embedded Design and Networking, University of Cooperative Education Loerra, September 2004.
  4. N. Song, B. Kwak, J. Song, and L. E. Miller, "Enhancement of IEEE 802.11 distributed coordination function with exponential increase exponential decrease backoff algorithm, " The 57th IEEE Semiannual, vol. 4, pp. 2775-2778, Apr. 2003.
  5. V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, "MACAW: A media access protocol for wireless LAN's, " in ACM SIGCOMM Comput. Commun. Rev., vol. 24, no. 4, pp. 212-225, Oct. 1994. https://doi.org/10.1145/190809.190334
  6. S. Pollin, M. Ergen, M. Timmers, A. Dejonghe, L. Van der Perre, I. Moerman, F. Catthoor, and A. Bahai, "Distributed cognitive coexistence of 802.15.4 with 802.11, " CROWNCOM 2006, pp. 1-5, Mykonos Island, Greece, Jun. 2006.
  7. J. S. Han, S. H. Lee, H. S. Kim, and Y. H. Lee, "Mitigation of co-channel interference in ZigBee, " in Proc. KICS ICC 2011, pp. 908-909, Korea, Feb. 2011.
  8. X. Zhang and G. Shin, "Enabiling coexistence of heterogeneous wireless systems: Case for ZigBee and WiFi, " in Proc. Twelfth ACM Int. Symp. Mobile Ad Hoc Networking and Computing ACM, Paris, France, May 2011.
  9. J. Huang, G. Xing, G. Zhou, and R. Zhou, "Beyond co-existence: exploiting WiFi white space for Zigbee performance assurance, " in Network Protocols (ICNP), pp. 305-314, Kyoto, Japan, Oct. 2010.
  10. L. Alberto, Probability, statistics, and random processes for electrical engineering, 3rd Ed., Pearson Press, 2008.
  11. L. Le, S. Albayrak, M. Elkotob, and A. C. Toker, "Improving TCP Goodput in 802.11 access networks, " in IEEE Int. Conf. Commun., ICC'07, pp. 4494-4499, Glasgow, Scotland, Jun. 2007.