DOI QR코드

DOI QR Code

Activity Recognition of Workers and Passengers onboard Ships Using Multimodal Sensors in a Smartphone

선박 탑승자를 위한 다중 센서 기반의 스마트폰을 이용한 활동 인식 시스템

  • Piyare, Rajeev Kumar (Department of Electronics Engineering, Mokpo National University) ;
  • Lee, Seong Ro (Department of Information Electronics Engineering, Mokpo National University)
  • Received : 2014.05.08
  • Accepted : 2014.09.12
  • Published : 2014.09.30

Abstract

Activity recognition is a key component in identifying the context of a user for providing services based on the application such as medical, entertainment and tactical scenarios. Instead of applying numerous sensor devices, as observed in many previous investigations, we are proposing the use of smartphone with its built-in multimodal sensors as an unobtrusive sensor device for recognition of six physical daily activities. As an improvement to previous works, accelerometer, gyroscope and magnetometer data are fused to recognize activities more reliably. The evaluation indicates that the IBK classifier using window size of 2s with 50% overlapping yields the highest accuracy (i.e., up to 99.33%). To achieve this peak accuracy, simple time-domain and frequency-domain features were extracted from raw sensor data of the smartphone.

상황 인식은 유비쿼터스컴퓨팅 환경에 대한 진화를 변화시켰고 무선 센서네트워크 기술은 많은 응용기기에 대한 새로운 방법을 제시하였다. 특히, 행동 인식은 사람의 응용서비스를 제공하는데 있어 특정 사용자의 상황을 인식하는 핵심 요소로 의학, 취미, 군사 분야에서 폭넓은 응용분야를 갖고 있고 사용반경의 확대에서도 효율과 정확도를 높이는 방법에 크게 기여한다. 스마트폰 센서로부터 나오는 데이터로부터 프레임이 512인셈플 데이터를 얻어, 프레임간50%의 오버랩을 갖도록 하고 Machine Learning Algorithm 인 WEKA Experimenter (University of Waikato, Version 3.6.10)을 써서 데이더로부터 시간영역 특징값을 추출함으로써 행동 인식에 대한 99.33%의 정확도를 얻을 수 있었다. 또한, WEKA Experimenter의 사용기법인 C4.5 Decision Tree과 다른 방법인 BN, NB, SMO or Logistic Regression간의 비교실험을 하였다.

Keywords

References

  1. L. G. Villanueva, S. Cagnoni, and L. Ascari, "Design of a wearable sensing system for human motion monitoring in physical rehabilitation," J. Sensors, vol. 13, no. 6, pp. 7735-7755, 2013. https://doi.org/10.3390/s130607735
  2. M. V. Albert, S. Toledo, M. Shapiro, and K. Kording, "Using mobile phones for activity recognition in Parkinson's patients," J. Frontiers in neurology, vol. 3, Nov. 2012.
  3. L. Bao and S. S. Intille, "Activity recognition from user-annotated acceleration data," in Proc. Pervasive Computing, vol. 3001, pp. 1-17, Linz/Vienna, Austria, Apr. 2004.
  4. D. Gordon, J.-H. Hanne, M. Berchtold, T. Miyaki, and M. Beigl, "Recognizing group activities using wearable sensors," in Proc. Mobile and Ubiquitous Systems: Computing, Networking, and Services, vol. 104, pp. 350- 361, 2012.
  5. N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, "Activity recognition from accelerometer data," in AAAI, vol. 5, pp. 1541-1546, 2005.
  6. J. R. Kwapisz, G. M. Weiss, and S. A. Moore, "Activity recognition using cell phone accelerometers," ACM SIGKDD Explorations Newsletter, vol. 12, pp. 74-82, 2011. https://doi.org/10.1145/1964897.1964918
  7. M. A. Awan, Z. Guangbin, and S.-D. Kim, "A dynamic approach to recognize activities in WSN," Int. J. Distrib. Sensor Netw., 2013.
  8. O. D. Lara, A. J. Perez, M. A. Labrador, and J. D. Posada, "Centinela: A human activity recognition system based on acceleration and vital sign data," Pervasive and Mobile Computing, vol. 8, pp. 717-729, 2011.
  9. Z. Zhao, Y. Chen, J. Liu, Z. Shen, and M. Liu, "Cross-people mobile-phone based activity recognition," in Proc. 22nd Int. Joint Conf. Artificial Intelligence, vol. 3, pp. 2545- 2550, 2011.
  10. T. M. Do, S. W. Loke, and F. Liu, "HealthyLife: An activity recognition system with smartphone using logic-based stream reasoning," in Mobile and Ubiquitous Systems: Computing, Networking, and Services, pp. 188-199, 2013.
  11. N. Kern, B. Schiele, and A. Schmidt, "Recognizing context for annotating a live life recording," Personal and Ubiquitous Comput., vol. 11, pp. 251-263, 2007. https://doi.org/10.1007/s00779-006-0086-3
  12. C. V. Bouten, K. T. Koekkoek, M. Verduin, R. Kodde, and J. D. Janssen, "A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity," IEEE Trans. Biomedical Eng., vol. 44, pp. 136-147, 1997. https://doi.org/10.1109/10.554760
  13. W. Wu, S. Dasgupta, E. E. Ramirez, C. Peterson, and G. J. Norman, "Classification accuracies of physical activities using smartphone motion sensors," J. Medical Internet Research, vol. 14, 2012.
  14. S. J. Preece, J. Y. Goulermas, L. P. Kenney, and D. Howard, "A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data," IEEE Trans. Biomedical Eng., vol. 56, pp. 871-879, 2009. https://doi.org/10.1109/TBME.2008.2006190
  15. I. Cleland, B. Kikhia, C. Nugent, A. Boytsov, J. Hallberg, K. Synnes, et al., "Optimal placement of accelerometers for the detection of everyday activities," J. Sensors, vol. 13, pp. 9183-9200, 2013. https://doi.org/10.3390/s130709183
  16. R. Herren, A. Sparti, K. Aminian, and Y. Schutz, "The prediction of speed and incline in outdoor running in humans using accelerometry," Medicine and science in sports and exercise, vol. 31, pp. 1053-1059, 1999. https://doi.org/10.1097/00005768-199907000-00020
  17. Waikato environment for knowledge analysis (WEKA), Available: http://www.cs.waikato.a c.nz/ml/weka
  18. I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques: Practical Machine Learning Tools and Techniques, 2nd Ed., Elsevier, 2005.
  19. M. Shoaib, J. Scholten, and P. Havinga, "Towards physical activity recognition using smartphone sensors," in Proc. IEEE 10th Int. Conf. Ubiquitous Intelligence & Computing, Vietri sul Mare, Italy, pp. 80-87, 2013.

Cited by

  1. Implementation of Smart Convergent Communication System of Satellite and Wireless for Monitoring in Closed Room of Vessel vol.19, pp.8, 2015, https://doi.org/10.6109/jkiice.2015.19.8.1853