References
- L. G. Villanueva, S. Cagnoni, and L. Ascari, "Design of a wearable sensing system for human motion monitoring in physical rehabilitation," J. Sensors, vol. 13, no. 6, pp. 7735-7755, 2013. https://doi.org/10.3390/s130607735
- M. V. Albert, S. Toledo, M. Shapiro, and K. Kording, "Using mobile phones for activity recognition in Parkinson's patients," J. Frontiers in neurology, vol. 3, Nov. 2012.
- L. Bao and S. S. Intille, "Activity recognition from user-annotated acceleration data," in Proc. Pervasive Computing, vol. 3001, pp. 1-17, Linz/Vienna, Austria, Apr. 2004.
- D. Gordon, J.-H. Hanne, M. Berchtold, T. Miyaki, and M. Beigl, "Recognizing group activities using wearable sensors," in Proc. Mobile and Ubiquitous Systems: Computing, Networking, and Services, vol. 104, pp. 350- 361, 2012.
- N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, "Activity recognition from accelerometer data," in AAAI, vol. 5, pp. 1541-1546, 2005.
- J. R. Kwapisz, G. M. Weiss, and S. A. Moore, "Activity recognition using cell phone accelerometers," ACM SIGKDD Explorations Newsletter, vol. 12, pp. 74-82, 2011. https://doi.org/10.1145/1964897.1964918
- M. A. Awan, Z. Guangbin, and S.-D. Kim, "A dynamic approach to recognize activities in WSN," Int. J. Distrib. Sensor Netw., 2013.
- O. D. Lara, A. J. Perez, M. A. Labrador, and J. D. Posada, "Centinela: A human activity recognition system based on acceleration and vital sign data," Pervasive and Mobile Computing, vol. 8, pp. 717-729, 2011.
- Z. Zhao, Y. Chen, J. Liu, Z. Shen, and M. Liu, "Cross-people mobile-phone based activity recognition," in Proc. 22nd Int. Joint Conf. Artificial Intelligence, vol. 3, pp. 2545- 2550, 2011.
- T. M. Do, S. W. Loke, and F. Liu, "HealthyLife: An activity recognition system with smartphone using logic-based stream reasoning," in Mobile and Ubiquitous Systems: Computing, Networking, and Services, pp. 188-199, 2013.
- N. Kern, B. Schiele, and A. Schmidt, "Recognizing context for annotating a live life recording," Personal and Ubiquitous Comput., vol. 11, pp. 251-263, 2007. https://doi.org/10.1007/s00779-006-0086-3
- C. V. Bouten, K. T. Koekkoek, M. Verduin, R. Kodde, and J. D. Janssen, "A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity," IEEE Trans. Biomedical Eng., vol. 44, pp. 136-147, 1997. https://doi.org/10.1109/10.554760
- W. Wu, S. Dasgupta, E. E. Ramirez, C. Peterson, and G. J. Norman, "Classification accuracies of physical activities using smartphone motion sensors," J. Medical Internet Research, vol. 14, 2012.
- S. J. Preece, J. Y. Goulermas, L. P. Kenney, and D. Howard, "A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data," IEEE Trans. Biomedical Eng., vol. 56, pp. 871-879, 2009. https://doi.org/10.1109/TBME.2008.2006190
- I. Cleland, B. Kikhia, C. Nugent, A. Boytsov, J. Hallberg, K. Synnes, et al., "Optimal placement of accelerometers for the detection of everyday activities," J. Sensors, vol. 13, pp. 9183-9200, 2013. https://doi.org/10.3390/s130709183
- R. Herren, A. Sparti, K. Aminian, and Y. Schutz, "The prediction of speed and incline in outdoor running in humans using accelerometry," Medicine and science in sports and exercise, vol. 31, pp. 1053-1059, 1999. https://doi.org/10.1097/00005768-199907000-00020
- Waikato environment for knowledge analysis (WEKA), Available: http://www.cs.waikato.a c.nz/ml/weka
- I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques: Practical Machine Learning Tools and Techniques, 2nd Ed., Elsevier, 2005.
- M. Shoaib, J. Scholten, and P. Havinga, "Towards physical activity recognition using smartphone sensors," in Proc. IEEE 10th Int. Conf. Ubiquitous Intelligence & Computing, Vietri sul Mare, Italy, pp. 80-87, 2013.
Cited by
- Implementation of Smart Convergent Communication System of Satellite and Wireless for Monitoring in Closed Room of Vessel vol.19, pp.8, 2015, https://doi.org/10.6109/jkiice.2015.19.8.1853