DOI QR코드

DOI QR Code

Dielectric and Piezoelectric Properties of (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics as a Function of CuO Addition

CuO 첨가에 따른 (Na,K,Li)(Nb,Sb,Ta)O3 세라믹스의 유전 및 압전 특성

  • Lee, KabSoo (Department of Electrical Engineering, Semyung University) ;
  • Kim, YouSeok (Department of Electrical Engineering, Semyung University) ;
  • Yoo, JuHyun (Department of Electrical Engineering, Semyung University) ;
  • Mah, Sukbum (Department of Lighting and Interior Design, Yong-in Songdam College)
  • 이갑수 (세명대학교 전기공학과) ;
  • 김유석 (세명대학교 전기공학과) ;
  • 류주현 (세명대학교 전기공학과) ;
  • 마석범 (용인송담대학 조명인테리어과)
  • Received : 2014.08.11
  • Accepted : 2014.09.05
  • Published : 2014.10.01

Abstract

$(Na_{0.525}K_{0.4425}Li_{0.0375})(Nb_{0.9975}Sb_{0.065}Ta_{0.0375})O_3+0.3 wt%CoO$ ceramics were fabricated as a function of CuO addition by traditional solid state sintering process in order to develop excellent lead-free piezoelectric ceramics composition. The addition of CuO in the LNKNTS composition ceramics can effectively enhance the densification of the ceramics, resulting in the oxygen vacancies as hardening effect. The excellent piezoelectric properties of electromechanical coupling factor($k{\small}_P$) of 0.378, piezoelectric constant($d_{33}$) of 152 pC/N were obtained from the 1.0 mol% CuO doped LNKNTS ceramics sintered at $1,020^{\circ}C$ for 3 h.

Keywords

References

  1. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971).
  2. Y. H. Lee, J. H. Yoo, K. S. Lee, I. S. Kim, J. S. Song, and Y. W. Park, J. Alloys Compd., 506, 872 (2010). https://doi.org/10.1016/j.jallcom.2010.07.102
  3. K. S. Lee, J. H. Yoo, J. I. Hong, S. T. Lee, Y. W. Kim, and H. S. Jeong, J. KIEEME, 20, 25 (2007).
  4. Y. Saito, H. Takao, T. Tani, T, Nonoyama, K. Takatori, T. Homma, T. Nahaya, and M. Nakamura, Nature, 432, 84 (2004). https://doi.org/10.1038/nature03028
  5. M. S. Chae, J. H. Koh, and S. K. Lee, J. Alloys Compd., 587, 729 (2014). https://doi.org/10.1016/j.jallcom.2013.11.021
  6. Y. Guo, K. I. Kakimoto, and H. Ohsato, Solid State Commun., 129, 279 (2004). https://doi.org/10.1016/j.ssc.2003.10.026
  7. S. H. Lee, S. D. Baek, D. H. Lee, S. G. Lee, and Y. H. Lee, J. KIEEME, 24, 636 (2011).
  8. I. T. Seo, C. H. Choi, M. S. Jang, B. Y. Kim, G. Han, S. Nahm, K. H. Cho, and J. H. Paik, Sens Actuators A, 200, 47 (2013). https://doi.org/10.1016/j.sna.2012.10.040
  9. S. M. Byeon and J. H. Yoo, Ferroelectrics, 437, 55 (2012). https://doi.org/10.1080/00150193.2012.742352
  10. S. H. Lee, J. H. Yoo, I. S. Kim, J. S. Song, and Y. W. Park, Ferroelectrics, 396, 83 (2010). https://doi.org/10.1080/00150191003795460
  11. S. J. Park, H. Y. Park, K. H. Cho, S. Nahm, H. G. Lee, D. H. Kim, and B. H. Choi, Mater. Res. Bull, 43, 3580 (2008). https://doi.org/10.1016/j.materresbull.2008.01.015
  12. B. Shao, J. H. Qiu, K. J. Zhu, Y. Cao, and H. L. Ji, J. Alloys. Compd., 515, 128 (2012). https://doi.org/10.1016/j.jallcom.2011.11.120