초록
본 연구에서는 비정상상태 운전을 기본으로 하는 CNG 충전소를 대상으로 다변량 통계분석방법 중의 하나인 다차원의 대용량 데이터 처리에 적합한 주성분분석(PCA) 기법을 사용하여 실시간 이상감지 및 진단이 가능한 모니터링 시스템을 제안하였다. CNG 충전소로부터 매초 간격으로 수집되는 7개의 압력센서 데이터와 5개의 온도센서 데이터의 주요 경향을 나타내는 변수들의 조합으로 주성분이라 불리는 새로운 특성변수들을 산출하고, 분산의 분포를 통해 특성변수의 계산으로부터 모델을 구축하였다. 모니터링은 구축된 모델을 통해 운전 중의 실시간 데이터를 반영하여 진행된다. 시스템 검증 및 정확성을 개선하기 위해 모니터링 테스트를 수행한 결과, 정상상태의 모든 데이터를 정상으로 판단하였고, 이상 데이터의 성공적인 검출 시 관련 변수를 추적하여 비정상 원인을 찾아낼 수 있었다.
In this study, we suggest a system to build the monitoring model for compressed natural gas (CNG) stations, operated in only non-stationary modes, and perform the real-time monitoring and the abnormality diagnosis using principal component analysis (PCA) that is suitable for processing large amounts of multi-dimensional data among multivariate statistical analysis methods. We build the model by the calculation of the new characteristic variables, called as the major components, finding the factors representing the trend of process operation, or a combination of variables among 7 pressure sensor data and 5 temperature sensor data collected from a CNG station at every second. The real-time monitoring is performed reflecting the data of process operation measured in real-time against the built model. As a result of conducting the test of monitoring in order to improve the accuracy of the system and verification, all data in the normal operation were distinguished as normal. The cause of abnormality could be refined, when abnormality was detected successfully, by tracking the variables out of the score plot.